| Citation: | Wang Zhanliang, Zhou Shuaicen, Lu Zhigang, et al. Design of W-band microstrip dual-channel traveling wave tubes[J]. High Power Laser and Particle Beams, 2025, 37: 083003. doi: 10.11884/HPLPB202537.250010 |
Microstrip traveling wave tubes (TWTs) have garnered significant attention due to their potential applications in communication, defense, and industrial systems. This paper presents a compact W-band dual-channel TWT, utilizing a U-shaped microstrip meander-line slow-wave structure (SWS). High-frequency characteristics are analyzed through simulation and cold tests. The results demonstrate that adjusting structural parameters effectively optimizes the S-parameters. Particle-in-cell (PIC) simulations with an 18.8 kV, 0.1 A electron beam predict an output power of 18 W with a gain of 14 dB. Experimental measurements of S-parameters are conducted using three substrate materials: Rogers 5880, quartz, and diamond. The quartz substrate exhibits the closest agreement with simulation results. The results advance the development of the microstrip-based TWTs for high-data-rate communication systems.
| [1] |
Booske J. Vacuum electronic sources for high power terahertz-regime radiation[C]//2011 IEEE International Vacuum Electronics Conference (IVEC). 2011: 11.
|
| [2] |
Wang Zhanliang, Wang Huanyu, He Ziyuan, et al. S band radial beam coaxial grating backward wave oscillator[J]. High Power Laser and Particle Beams, 2023, 35: 113001.
|
| [3] |
Komm D S, Benton R T, Limburg H C, et al. Advances in space TWT efficiencies[J]. IEEE Transactions on Electron Devices, 2001, 48(1): 174-176. doi: 10.1109/16.892186
|
| [4] |
Wang Zhanliang, Xu Xiong, Gong Yubin, et al. Simulation on W-band sheet beam rectangular waveguide grating backward-wave oscillator[J]. High Power Laser and Particle Beams, 2015, 27: 083005. doi: 10.11884/HPLPB202335.230198
|
| [5] |
Wang Shaomeng, Cao Zan, Hou Yan, et al. A novel angular log-periodic micro-strip meander-line slow wave structure for low-voltage and wideband traveling wave tube[C]//2013 IEEE 14th International Vacuum Electronics Conference (IVEC). 2013: 1-2.
|
| [6] |
Ulisse G, Krozer V. W-band traveling wave tube amplifier based on planar slow wave structure[J]. IEEE Electron Device Letters, 2017, 38(1): 126-129. doi: 10.1109/LED.2016.2627602
|
| [7] |
Himes L, Gamzina D, Popovic B, et al. Development of nano machining techniques to bridge the terahertz gap[C]//2016 IEEE International Vacuum Electronics Conference (IVEC). 2016: 1-2.
|
| [8] |
Scott A W. The printed circuit TWT[C]//1972 International Electron Devices Meeting. 1972: 62.
|
| [9] |
Potter B R, Scott A W, Tancredi J J. High-power printed circuit traveling wave tubes[C]//1973 International Electron Devices Meeting. 1973: 521-524.
|
| [10] |
Wang Zhanliang, Liu Xing, Hu Qiang, et al. A Ka-band angular log-periodic meander-line SWS supported by diamond rods[J]. IEEE Transactions on Electron Devices, 2022, 69(3): 1374-1379. doi: 10.1109/TED.2022.3141037
|
| [11] |
Xu Duo, Wang Shaomeng, Wang Zhanliang, et al. Theory and experiment of high-gain modified angular log-periodic folded waveguide slow wave structure[J]. IEEE Electron Device Letters, 2020, 41(8): 1237-1240. doi: 10.1109/LED.2020.3000759
|
| [12] |
Bai Ningfeng, Gu Leilei, Shen Changshen, et al. S-shaped microstrip meander-line slow-wave structure for W-band traveling-wave tube[C]//2013 IEEE 14th International Vacuum Electronics Conference (IVEC). 2013: 1-2.
|
| [13] |
Ding Chong, Wei Yanyu, Wang Yuanyuan, et al. 2-dimensional microstrip meander-line for broad band planar TWTs[C]//2016 IEEE International Vacuum Electronics Conference (IVEC). 2016: 1-2.
|
| [14] |
Galdetskiy A, Rakova E. New slow wave structure for W-band TWT[C]//2017 Eighteenth International Vacuum Electronics Conference (IVEC). 2017: 1-2.
|
| [15] |
Su Liangxin. Research on W-band banding electron injection microstrip Meander-Line TWT[D]. Chengdu: University of Electronic Science and Technology of China, 2022.
|
| [16] |
Wang Shaomeng, Aditya S, Xia Xin, et al. Ka-band symmetric v-shaped meander-line slow wave structure[J]. IEEE Transactions on Plasma Science, 2019, 47(10): 4650-4657. doi: 10.1109/TPS.2019.2940254
|
| [17] |
Kumar M M A, Aditya S, Zhao Chen. Transmission characteristics of planar tape-helix: simulation and measurements[C]//2018 IEEE International Vacuum Electronics Conference (IVEC). 2018: 343-344.
|
| [18] |
Starodubov A V, Serdobintsev A A, Pavlov A M, et al. Study of electromagnetic parameters of a V-band planar meander slow-wave structure[C]//2018 IEEE International Vacuum Electronics Conference (IVEC). 2018: 421-422.
|
| [19] |
Nozhkin D, Starodubov A, Kozhevnikov I, et al. Improved laser microprocessing of 2D planar microstrip slow-wave structures for millimeter-band vacuum microelectronic devices[C]//2023 24th International Vacuum Electronics Conference (IVEC). 2023: 1-2.
|
| [20] |
Wang Hexin, Wang Shaomeng, Wang Zhanliang, et al. Dielectric-supported staggered dual meander-line slow wave structure for an E-band TWT[J]. IEEE Transactions on Electron Devices, 2021, 68(1): 369-375. doi: 10.1109/TED.2020.3040143
|
| [21] |
Pchelnikov Y N. Double-zigzag slow-wave structure for a plane TWT[C]//2018 IEEE International Vacuum Electronics Conference (IVEC). 2018: 93-94.
|
| [22] |
Sumathy M, Augustin D, Datta S K, et al. Design and RF characterization of W-band meander-line and folded-waveguide slow-wave structures for TWTs[J]. IEEE Transactions on Electron Devices, 2013, 60(5): 1769-1775. doi: 10.1109/TED.2013.2252179
|
| [23] |
CST Corp. CST PS Tutorials[EB/OL]. http://www.cstchina.cn/.
|
| [24] |
He Xu, Ma Yuncan, Ma Xiao, et al. Research progress of femtosecond laser precision machining technology for precision experiment[J]. High Power Laser and Particle Beams, 2025, 37: 011004. doi: 10.11884/HPLPB202537.240304
|
| [25] |
Serdobintsev A, et al. Molybdenum-copper alloys as a base material for micro-fabrication planar slow -wave structures of millimeter-band vacuum electron devices[C]//2020 7th International Congress on Energy Fluxes and Radiation Effects (EFRE). 2020: 809-812.
|