Volume 37 Issue 7
Jul.  2025
Turn off MathJax
Article Contents
Yao Dingding, Zhang Weidong, Jin Long, et al. Field-line coupling characteristics of relay protection device under strong electromagnetic pulse[J]. High Power Laser and Particle Beams, 2025, 37: 075003. doi: 10.11884/HPLPB202537.250014
Citation: Yao Dingding, Zhang Weidong, Jin Long, et al. Field-line coupling characteristics of relay protection device under strong electromagnetic pulse[J]. High Power Laser and Particle Beams, 2025, 37: 075003. doi: 10.11884/HPLPB202537.250014

Field-line coupling characteristics of relay protection device under strong electromagnetic pulse

doi: 10.11884/HPLPB202537.250014
  • Received Date: 2025-01-15
  • Accepted Date: 2025-06-03
  • Rev Recd Date: 2025-06-03
  • Available Online: 2025-06-14
  • Publish Date: 2025-07-09
  • Strong electromagnetic pulse can induce nanosecond rising edge pulse conduction disturbance on the cable in the form of field-transmission line coupling, which poses a great threat to the equipment at the end of the cable. For a certain type of relay protection device, the immunity performance is tested first, and then the high-altitude electromagnetic pulse irradiation test under the field-line coupling path is carried out to obtain the coupling characteristics of the device port. The device malfunctions when the common mode current coupled to the signal port reaches 32.45 A and above. At the same time, the pulse current injection test is carried out. When the pulse current injected into the signal port reaches 36.92 A or more, the device malfunctions, further confirming the critical interference threshold of the device port. Through the establishment of the field-line coupling model of the secondary cable in the substation and the signal cable in the protective panel cabinet, the coupling quantity of high-altitude electromagnetic pulse in different scenarios is calculated, and the key points of field-line coupling protection are proposed. The research results can provide reference for the evaluation of anti-interference ability and protection technology of relay protection devices in strong electromagnetic pulse environments.
  • loading
  • [1]
    刘彤宇, 李丽, 王亚楠, 等. 高空电磁脉冲晚期环境下电力系统效应研究进展[J]. 强激光与粒子束, 2024, 36:055020 doi: 10.11884/HPLPB202436.240042

    Liu Tongyu, Li Li, Wang Ya’nan, et al. Research progress on power system effects in late-time high-altitude electromagnetic pulses environment[J]. High Power Laser and Particle Beams, 2024, 36: 055020 doi: 10.11884/HPLPB202436.240042
    [2]
    秦锋, 王旭桐, 陈伟, 等. 高空电磁脉冲作用下配电变压器瞬态响应与失效机理[J]. 中国电机工程学报, 2023, 43(17):6924-6932

    Qin Feng, Wang Xutong, Chen Wei, et al. Transient response and failure mechanism of distribution transformer under high-altitude electromagnetic pulse[J]. Proceedings of the CSEE, 2023, 43(17): 6924-6932
    [3]
    邱爱慈, 别朝红, 李更丰, 等. 强电磁脉冲威胁与弹性电力系统发展战略[J]. 现代应用物理, 2021, 12:030101

    Qiu Aici, Bie Zhaohong, LI Gengfeng, et al. HEMP threat and development strategy of resilient power system[J]. Modern Applied Physics, 2021, 12: 030101
    [4]
    李祥超, 王贤超. 输电线缆耦合强电磁脉冲特性的分析[J]. 电瓷避雷器, 2024(5):1-11

    Li Xiangchao, Wang Xianchao. Characteristics of power transmission cable coupled strong electromagnetic pulse[J]. Insulators and Surge Arresters, 2024(5): 1-11
    [5]
    克莱顿 R. 保罗. 多导体传输线分析[M]. 杨晓宪, 郑涛, 译. 2版. 北京: 中国电力出版社, 2013: 1-372

    Paul C R. Analysis of multiconductor transmission lines[M]. Yang Xiaoxian, Zheng Tao, trans. 2nd ed. Beijing: China Electric Power Press, 2013: 1-372
    [6]
    Taylor C, Satterwhite R, Harrison C. The response of a terminated two-wire transmission line excited by a nonuniform electromagnetic field[J]. IEEE Transactions on Antennas and Propagation, 1965, 13(6): 987-989. doi: 10.1109/TAP.1965.1138574
    [7]
    Agrawal A K, Price H J, Gurbaxani S H. Transient response of multiconductor transmission lines excited by a nonuniform electromagnetic field[J]. IEEE Transactions on Electromagnetic Compatibility, 1980, EMC-22(2): 119-129. doi: 10.1109/TEMC.1980.303824
    [8]
    Rachidi F. Formulation of the field-to-transmission line coupling equations in terms of magnetic excitation field[J]. IEEE Transactions on Electromagnetic Compatibility, 1993, 35(3): 404-407. doi: 10.1109/15.277316
    [9]
    席志豪, 梁涛, 谢彦召, 等. 基于时域BLT方程的带绝缘线缆束场-线耦合模型[J]. 高电压技术, 2024, 50(2):758-764

    Xi Zhihao, Liang Tao, Xie Yanzhao, et al. Field-to-line coupling model for insulated wiring bundle based on time-domain BLT equation[J]. High Voltage Engineering, 2024, 50(2): 758-764
    [10]
    Paul C R. A SPICE model for multiconductor transmission lines excited by an incident electromagnetic field[J]. IEEE Transactions on Electromagnetic Compatibility, 1994, 36(4): 342-354. doi: 10.1109/15.328864
    [11]
    胡榕, 崔翔, 陈维江, 等. 一种电磁场-传输线组合的时域有限差分方法[J]. 华北电力大学学报, 2015, 42(3):1-7,30

    Hu Rong, Cui Xiang, Chen Weijiang, et al. A method of finite difference time domain combined with electromagnetic field and transmission lines[J]. Journal of North China Electric Power University, 2015, 42(3): 1-7,30
    [12]
    李宝忠, 何金良, 周辉, 等. 核电磁脉冲环境中传输线的电磁干扰[J]. 高电压技术, 2009, 35(11):2753-2758

    Li Baozhong, He Jinliang, Zhou Hui, et al. Eletromagnetic interference of transmisssion line in HEMP environment[J]. High Voltage Engineering, 2009, 35(11): 2753-2758
    [13]
    龚渝涵, 李俊娜, 田君杨, 等. 典型变电站沟内线缆HEMP耦合仿真研究[J]. 智慧电力, 2024, 52(4):47-53,99 doi: 10.3969/j.issn.1673-7598.2024.04.008

    Gong Yuhan, Li Junna, Tian Junyang, et al. Simulation study on HEMP coupling of cables in the trench of typical substation[J]. Smart Power, 2024, 52(4): 47-53,99 doi: 10.3969/j.issn.1673-7598.2024.04.008
    [14]
    张卫东, 陈沛龙, 陈维江, 等. 特高压GIS变电站VFTO对二次电缆骚扰电压的实测与仿真[J]. 中国电机工程学报, 2013, 33(16):187-196

    Zhang Weidong, Chen Peilong, Chen Weijiang, et al. Measurement and simulation of disturbance voltage generated by VFTO in UHV GIS substation on the secondary cables[J]. Proceedings of the CSEE, 2013, 33(16): 187-196
    [15]
    陈维江, 赵军, 边凯, 等. GIS变电站开关操作瞬态电磁骚扰研究进展[J]. 中国电机工程学报, 2019, 39(16):4935-4948

    Chen Weijiang, Zhao Jun, Bian Kai, et al. Research progress on transient electromagnetic disturbance due to switching operations in GIS substation[J]. Proceedings of the CSEE, 2019, 39(16): 4935-4948
    [16]
    潘晓东, 魏光辉, 万浩江, 等. 电子设备电磁辐射敏感度测试相关问题研究[J]. 强激光与粒子束, 2020, 32:073002

    Pan Xiaodong, Wei Guanghui, Wan Haojiang, et al. Research on several test issues of electromagnetic radiation susceptibility for electronic equipment[J]. High Power Laser and Particle Beams, 2020, 32: 073002
    [17]
    潘晓东, 魏光辉, 卢新福, 等. 差模定向注入等效替代强电磁脉冲辐射效应试验方法[J]. 电波科学学报, 2017, 32(2):151-160

    Pan Xiaodong, Wei Guanghui, Lu Xinfu, et al. Test method of using differential mode directional injection as a substitute for high intensity electromagnetic pulse radiation[J]. Chinese Journal of Radio Science, 2017, 32(2): 151-160
    [18]
    黄蕙. 微机继电保护硬件系统的抗电磁干扰设计策略[J]. 电力系统保护与控制, 2010, 38(20):220-224

    Huang Hui. Design strategy of electromagnetic anti-jamming for hardware system of microcomputer relay protection[J]. Power System Protection and Control, 2010, 38(20): 220-224
    [19]
    郑玉平, 吕鹏飞, 李斌, 等. 新型电力系统继电保护面临的问题与解决思路[J]. 电力系统自动化, 2023, 47(22):3-15

    Zheng Yuping, Lyu Pengfei, Li Bin, et al. Problems faced by relay protection in new power system and their solution ideas[J]. Automation of Electric Power Systems, 2023, 47(22): 3-15
    [20]
    GB/T 17799.5-2012, 电磁兼容 通用标准 室内设备高空电磁脉冲(HEMP)抗扰度[S]

    GB/T 17799.5-2012, Electromagnetic compatibility (EMC)-Generic standards-HEMP immunity for indoor equipment[S]
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(4)

    Article views (326) PDF downloads(34) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return