Volume 37 Issue 9
Sep.  2025
Turn off MathJax
Article Contents
Xie Bo, Zhang Xiaohui, Li Tianyue, et al. Numerical study of electron acceleration and betatron radiation based on interaction of petawatt femtosecond laser with near-critical-density plasma[J]. High Power Laser and Particle Beams, 2025, 37: 091002. doi: 10.11884/HPLPB202537.250033
Citation: Xie Bo, Zhang Xiaohui, Li Tianyue, et al. Numerical study of electron acceleration and betatron radiation based on interaction of petawatt femtosecond laser with near-critical-density plasma[J]. High Power Laser and Particle Beams, 2025, 37: 091002. doi: 10.11884/HPLPB202537.250033

Numerical study of electron acceleration and betatron radiation based on interaction of petawatt femtosecond laser with near-critical-density plasma

doi: 10.11884/HPLPB202537.250033
  • Received Date: 2025-02-24
  • Accepted Date: 2025-06-27
  • Rev Recd Date: 2025-06-06
  • Available Online: 2025-07-22
  • Publish Date: 2025-09-05
  • Background
    Laser-driven betatron radiation is a wide-energy-spectrum X-ray source analogous to synchrotron radiation. Compared to the quasi-monochromatic X-ray spectra of synchrotron radiation or free-electron lasers, the broad energy spectrum of betatron radiation is more favorable for X-ray absorption spectroscopy. Additionally, laser-driven betatron radiation features a small source size, short pulse duration, low divergence, and high brightness, making it comparable to third-generation synchrotron sources.
    Purpose
    The photon energy yield of betatron radiation is closely related to the quality of the electron beam, plasma density, and transverse oscillation amplitude. However, current technology faces two major challenges: first, there is a trade-off between electron beam charge and energy, with single-shot charges typically limited to the hundreds-of-pC range; second, the radiation conversion efficiency is significantly influenced by target parameters, necessitating breakthroughs through innovative target structures.
    Methods
    For typical petawatt-class femtosecond laser facility parameters, a capillary-type gas-cell structure target is proposed to generate a near-critical density plasma with a hundred-micrometer scale and a steep density gradient. This gas-cell structure target features low back pressure and minimal gas injection. Due to the confinement by the gas cell walls, a more stable platform-like gas density distribution can be produced within the cell.
    Results
    Particle-in-cell simulation methods were employed to study the electron acceleration and betatron radiation processes resulting from the interaction of petawatt-class femtosecond lasers with this near-critical density plasma. By adjusting the gas density and laser pulse width, a high-charge and high-energy electron beam can be induced to undergo transverse oscillations within the plasma channel, thereby generating a high-brightness betatron radiation source with a peak photon energy of approximately 8 keV and a brightness of $ 1.75\times {10}^{20}\;\mathrm{p}\mathrm{h}\cdot {\mathrm{s}}^{-1}\cdot {\mathrm{m}\mathrm{m}}^{-2}\cdot {\mathrm{m}\mathrm{r}\mathrm{a}\mathrm{d}}^{-2}\cdot $$ {\left(0.1{\text{%}} \mathrm{b}\mathrm{w}\right)}^{-1} $.
    Conclusions
    The results indicate that appropriate gas density and laser pulse width are conducive to the stable formation of plasma channels. Within these channels, electrons undergo effective laser wakefield acceleration firstly. These accelerated high-energy electrons interact directly with the tail of the laser. Through betatron resonance and direct laser acceleration, their yield and cutoff energy can be further enhanced. Additionally, the study focuses on the impact of gas density and laser pulse width on the betatron radiation source and elucidates the underlying mechanisms.
  • loading
  • [1]
    Corde S, Ta Phuoc K, Lambert G, et al. Femtosecond x rays from laser-plasma accelerators[J]. Reviews of Modern Physics, 2013, 85(1): 1-48. doi: 10.1103/RevModPhys.85.1
    [2]
    鲁瑜, 张昊, 张亮琪, 等. 基于激光等离子体的X/γ辐射研究进展[J]. 强激光与粒子束, 2023, 35: 012006 doi: 10.11884/HPLPB202335.220222

    Lu Yu, Zhang Hao, Zhang Liangqi, et al. Research progress of X/γ photon emission in laser-plasma interaction[J]. High Power Laser and Particle Beams, 2023, 35: 012006 doi: 10.11884/HPLPB202335.220222
    [3]
    Mahieu B, Jourdain N, Ta Phuoc K, et al. Probing warm dense matter using femtosecond X-ray absorption spectroscopy with a laser-produced betatron source[J]. Nature Communications, 2018, 9: 3276. doi: 10.1038/s41467-018-05791-4
    [4]
    Ping Y, Hicks D G, Yaakobi B, et al. A platform for x-ray absorption fine structure study of dynamically compressed materials above 1 mbar[J]. Review of Scientific Instruments, 2013, 84: 123105. doi: 10.1063/1.4841935
    [5]
    Ravasio A, Koenig M, Le Pape S, et al. Hard x-ray radiography for density measurement in shock compressed matter[J]. Physics of Plasmas, 2008, 15: 060701. doi: 10.1063/1.2928156
    [6]
    Wood J C, Chapman D J, Poder K, et al. Ultrafast imaging of laser driven shock waves using betatron x-rays from a laser wakefield accelerator[J]. Scientific Reports, 2018, 8: 11010. doi: 10.1038/s41598-018-29347-0
    [7]
    Döpp A, Hehn L, Götzfried J, et al. Quick x-ray microtomography using a laser-driven betatron source[J]. Optica, 2018, 5(2): 199-203. doi: 10.1364/OPTICA.5.000199
    [8]
    Zhang Z M, Zhang B, Hong W, et al. Enhanced x-rays from resonant betatron oscillations in laser Wakefield with external wigglers[J]. Plasma Physics and Controlled Fusion, 2016, 58: 105009. doi: 10.1088/0741-3335/58/10/105009
    [9]
    Ferri J, Corde S, Döpp A, et al. High-brilliance betatron γ-ray source powered by laser-accelerated electrons[J]. Physical Review Letters, 2018, 120: 254802. doi: 10.1103/PhysRevLett.120.254802
    [10]
    Esarey E, Schroeder C B, Leemans W P. Physics of laser-driven plasma-based electron accelerators[J]. Reviews of Modern Physics, 2009, 81(3): 1229-1285. doi: 10.1103/RevModPhys.81.1229
    [11]
    陈民, 刘峰, 李博原, 等. 激光等离子体尾波加速器的发展和展望[J]. 强激光与粒子束, 2020, 32: 092001 doi: 10.11884/HPLPB202032.200174

    Chen Min, Liu Feng, Li Boyuan, et al. Development and prospect of laser plasma wakefield accelerator[J]. High Power Laser and Particle Beams, 2020, 32: 092001 doi: 10.11884/HPLPB202032.200174
    [12]
    Aniculaesei C, Ha T, Yoffe S, et al. The acceleration of a high-charge electron bunch to 10 GeV in a 10-cm nanoparticle-assisted wakefield accelerator[J]. Matter and Radiation at Extremes, 2024, 9: 014001. doi: 10.1063/5.0161687
    [13]
    Götzfried J, Döpp A, Gilljohann M F, et al. Physics of high-charge electron beams in laser-plasma wakefields[J]. Physical Review X, 2020, 10: 041015.
    [14]
    Cipiccia S, Islam M R, Ersfeld B, et al. Gamma-rays from harmonically resonant betatron oscillations in a plasma wake[J]. Nature Physics, 2011, 7(11): 867-871. doi: 10.1038/nphys2090
    [15]
    Danson C N, Haefner C, Bromage J, et al. Petawatt and exawatt class lasers worldwide[J]. High Power Laser Science and Engineering, 2019, 7: e54. doi: 10.1017/hpl.2019.36
    [16]
    冷雨欣. 上海超强超短激光实验装置[J]. 中国激光, 2019, 46: 0100001 doi: 10.3788/CJL201946.0100001

    Leng Yuxin. Shanghai superintense ultrafast laser facility[J]. Chinese Journal of Lasers, 2019, 46: 0100001 doi: 10.3788/CJL201946.0100001
    [17]
    Zeng Xiaoming, Zhou Kainan, Zuo Yanlei, et al. Multi-petawatt laser facility fully based on optical parametric chirped-pulse amplification[J]. Optics Letters, 2017, 42(10): 2014-2017. doi: 10.1364/OL.42.002014
    [18]
    Cikhardt J, Gyrdymov M, Zähter S, et al. Characterization of bright betatron radiation generated by direct laser acceleration of electrons in plasma of near critical density[J]. Matter and Radiation at Extremes, 2024, 9: 027201. doi: 10.1063/5.0181119
    [19]
    Tan J H, Li Y F, Li D Z, et al. Observation of high efficiency betatron radiation from femtosecond petawatt laser irradiated near critical plasmas[DB/OL]. arXiv preprint arXiv: 2109.12467, 2021.
    [20]
    Zhang Z M, Wu Y C, Zhang X H, et al. Inhibition of electron refluxing in laser-gas interactions for enhanced positron generation[J]. Plasma Physics and Controlled Fusion, 2022, 64: 095015. doi: 10.1088/1361-6587/ac7ee9
    [21]
    Ammosov M V, Delone N B, Krainov V P. Tunnel ionization of complex atoms and atomic ions in electromagnetic field[C]//Proceedings of SPIE 0664, High Intensity Laser Processes. 1986: 138-141.
    [22]
    Chen Min, Pukhov A, Yu Tongpu, et al. Radiation reaction effects on ion acceleration in laser foil interaction[J]. Plasma Physics and Controlled Fusion, 2011, 53: 014004. doi: 10.1088/0741-3335/53/1/014004
    [23]
    Gahn C, Tsakiris G D, Pukhov A, et al. Multi-MeV electron beam generation by direct laser acceleration in high-density plasma channels[J]. Physical Review Letters, 1999, 83(23): 4772-4775. doi: 10.1103/PhysRevLett.83.4772
    [24]
    Pukhov A, Sheng Z M, Meyer-ter-Vehn J. Particle acceleration in relativistic laser channels[J]. Physics of Plasmas, 1999, 6(7): 2847-2854. doi: 10.1063/1.873242
    [25]
    Lu W, Tzoufras M, Joshi C, et al. Generating multi-GeV electron bunches using single stage laser wakefield acceleration in a 3D nonlinear regime[J]. Physical Review Special Topics-Accelerators and Beams, 2007, 10: 061301. doi: 10.1103/PhysRevSTAB.10.061301
    [26]
    Esarey E, Shadwick B A, Catravas P, et al. Synchrotron radiation from electron beams in plasma-focusing channels[J]. Physical Review E, 2002, 65: 056505. doi: 10.1103/PhysRevE.65.056505
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)

    Article views (259) PDF downloads(36) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return