Sun Weixiang, Wang Xinzheng, Shi Leilei, et al. Parameter optimization of dual active bridge converter under extended phase shift modulation[J]. High Power Laser and Particle Beams, 2025, 37: 095002. doi: 10.11884/HPLPB202537.250043
Citation: Sun Weixiang, Wang Xinzheng, Shi Leilei, et al. Parameter optimization of dual active bridge converter under extended phase shift modulation[J]. High Power Laser and Particle Beams, 2025, 37: 095002. doi: 10.11884/HPLPB202537.250043

Parameter optimization of dual active bridge converter under extended phase shift modulation

doi: 10.11884/HPLPB202537.250043
  • Received Date: 2025-03-10
  • Accepted Date: 2025-06-30
  • Rev Recd Date: 2025-06-30
  • Available Online: 2025-07-07
  • Publish Date: 2025-09-05
  • Background
    With the development of active phased array radar systems, the demand for transmit-receive (TR) power supplies has increased significantly. Modern TR modules require power supplies with wide input voltage ranges, high-frequency operation, and high efficiency. dual-active bridge (DAB) converters are widely recognized for their ability to achieve these characteristics, offering diverse control strategies and broad application potential. However, key system parameters such as inductance and switching frequency in DAB converters significantly impact power transmission capabilities and the on-state current of power MOSFETs, posing challenges for optimal design.
    Purpose
    This study aims to address these challenges by proposing a parameter optimization design method for DAB converters based on extended phase-shift (EPS) modulation. The goal is to ensure reliable operation under overload conditions while meeting critical design constraints, including maximum power transfer, MOSFET current derating, and output voltage ripple reduction.
    Methods
    The power transfer characteristics and inductor current expressions of the EPS-modulated DAB converter were derived theoretically. A reliability-oriented operating region (ROA) was defined by integrating constraints such as maximum power transfer under overload, MOSFET on-state current derating, and minimum output voltage ripple frequency. The optimization process involved systematic parameter planning to determine optimal inductance values and switching frequencies.
    Results
    MATLAB simulations of a dual-output DAB converter demonstrated that the proposed method effectively reduced output voltage ripple, minimized MOSFET on-state current, and achieved the desired power output. The simulation results aligned with theoretical predictions, validating the accuracy of the derived equations and the feasibility of the optimization approach.
    Conclusions
    The EPS-based parameter optimization method provides a systematic framework for designing DAB converters tailored to TR power supply requirements. By addressing key design constraints and leveraging ROA analysis, this approach enhances power transmission efficiency and device reliability. The results highlight the potential of EPS-modulated DAB converters in advanced TR modules, offering a practical solution for high-performance phased array radar systems.
  • [1]
    包敏杰, 俞小莉, 黄瑞, 等. 大功率燃料电池建模与电压一致性分析[J]. 储能科学与技术, 2024, 13(3): 952-961

    Bao Minjie, Yu Xiaoli, Huang Rui, et al. High-power fuel cell modeling and voltage uniformity analysis[J]. Energy Storage Science and Technology, 2024, 13(3): 952-962
    [2]
    张才清, 孙轶, 张磊. 高功率密度雷达脉冲负载电源[J]. 现代雷达, 2021, 43(3): 94-98

    Zhang Caiqing, Sun Yi, Zhang Lei. High power density pulse power source design[J]. Modern Radar, 2021, 43(3): 94-98
    [3]
    王正之, 白璐, 黄晓燕. 相控阵雷达阵面电源储能电容的特性研究[J]. 数字技术与应用, 2020, 38(5): 40-41

    Wang Zhengzhi, Bai Lu, Huang Xiaoyan. Research on the characteristics of energy-storage capacitor of the power supply for phased array radar[J]. Digital Technology and Application, 2020, 38(5): 40-41
    [4]
    张宝敏, 曾钢. 新型固定式相控阵雷达供电系统研究[J]. 中文科技期刊数据库(全文版)工程技术, 2023(6): 58-61

    Zhang Baomin, Zeng Gang. Research on new fixed phased array radar power supply system[J]. Chinese Science and Technology Periodicals Database (Full-text Edition) Engineering Technology, 2023(6): 58-61
    [5]
    蒋华, 陈善华. 一种雷达阵面T/R供电模块的研究与实践[J]. 现代雷达, 2012, 34(7): 64-67 doi: 10.3969/j.issn.1004-7859.2012.07.016

    Jiang Hua, Chen Shanhua. Research and practice of a power module for radar array T/R[J]. Modern Radar, 2012, 34(7): 64-67 doi: 10.3969/j.issn.1004-7859.2012.07.016
    [6]
    操建生, 于新红, 许立斌, 等. 双有源全桥变换器无模型预测控制策略[J]. 微特电机, 2024, 52(2): 64-69 doi: 10.3969/j.issn.1004-7018.2024.02.012

    Cao Jiansheng, Yu Xinhong, Xu Libin, et al. Model-free predictive control strategy for dual active full-bridge converters[J]. Small & Special Electrical Machines, 2024, 52(2): 64-69 doi: 10.3969/j.issn.1004-7018.2024.02.012
    [7]
    杨向真, 王锦秀, 孔令浩, 等. 电压不匹配运行条件下双有源桥变换器的效率优化方法[J]. 电工技术学报, 2022, 37(24): 6239-6251

    Yang Xiangzhen, Wang Jinxiu, Kong Linghao, et al. Efficiency optimization method of DAB converters under wide-voltage operating conditions[J]. Transactions of China Electrotechnical Society, 2022, 37(24): 6239-6251
    [8]
    刘春喜, 徐金荣, 刘文强, 等. 扩展移相控制的DAB变换器双目标优化策略[J]. 电子测量与仪器学报, 2024, 38(10): 180-190

    Liu Chunxi, Xu Jinrong, Liu Wenqiang, et al. Dual-objective optimization strategy for DAB converter with extended phase shift control[J]. Journal of Electronic Measurement and Instrumentation, 2024, 38(10): 180-190
    [9]
    王祺, 张泽轲, 刘彬, 等. 双重移相控制下双有源桥变换器最小回流功率全局优化控制[J]. 电网技术, 2024, 48(9): 3921-3930

    Wang Qi, Zhang Zeke, Liu Bin, et al. Global optimization control of minimum backflow power for dual-active-bridge converters under dual-phase-shift control[J]. Power System Technology, 2024, 48(9): 3921-3930
    [10]
    曾进辉, 饶尧, 兰征, 等. 三重移相控制的DAB变换器多目标统一优化控制策略[J]. 电源学报, 2024, 22(5): 74-85,132

    Zeng Jinhui, Rao Yao, Lan Zheng, et al. Multi-objective unified optimal control strategy for DAB converter with triple-phase-shift control[J]. Journal of Power Supply, 2024, 22(5): 74-85,132
    [11]
    Huang Jun, Wang Yue, Li Zhuoqiang, et al. Unified triple-phase-shift control to minimize current stress and achieve full soft-switching of isolated bidirectional DC–DC converter[J]. IEEE Transactions on Industrial Electronics, 2016, 63(7): 4169-4179. doi: 10.1109/TIE.2016.2543182
    [12]
    黄匀飞, 钟启濠, 欧阳有鹏, 等. 双有源桥变换器拓扑结构与控制策略研究综述[J]. 电源学报, 2024, 22(4): 53-65

    Huang Yunfei, Zhong Qihao, Ouyang Youpeng, et al. Overview of topologies and control strategies for dual-active-bridge converters[J]. Journal of Power Supply, 2024, 22(4): 53-65
    [13]
    赵彪, 宋强. 双主动全桥DC-DC变换器的理论和应用技术[M]. 北京: 科学出版社, 2017

    Zhao Biao, Song Qiang. Theory and application technology of dual active full-bridge DC-DC converter[M]. Beijing: Science Press, 2017
    [14]
    孙志峰. 双有源全桥DC-DC变换器优化调制与并联均流控制[D]. 株洲: 湖南工业大学, 2019

    Sun Zhifeng. Optimal modulation and parallel current sharing control of dual active full-bridge DC-DC converter[D]. Zhuzhou: Hunan University of Technology, 2019
    [15]
    童安平, 杭丽君, 李国杰. 三重移相控制下DAB变换器全局优化控制策略及分析[J]. 中国电机工程学报, 2017, 37(20): 6037-6049

    Tong Anping, Hang Lijun, Li Guojie. Global optimized control strategy of dual active bridge converter controlled by triple-phase-shift modulation scheme and its analysis[J]. Proceedings of the CSEE, 2017, 37(20): 6037-6049
    [16]
    邵持, 童安平, 钱语安, 等. 三重移相调制下DAB变换器全功率范围统一ZVS控制策略[J]. 中国电机工程学报, 2019, 39(19): 5644-5655

    Shao Chi, Tong Anping, Qian Yu’an, et al. Triple-phase-shift based unified ZVS modulation strategy of dual active bridge converter for full operation range[J]. Proceedings of the CSEE, 2019, 39(19): 5644-5655
    [17]
    GJB/Z 35-93, 元器件降额准则[S]

    GJB/Z 35-93, Derating criteria for electrical, electronic and electromechanical parts[S]
  • Relative Articles

    [1]Wang Naizhi, Wu Hongchao, Wang Kan. Fast leading-edge pulse emission and spatial combination of solid-state active phased array[J]. High Power Laser and Particle Beams, 2023, 35(5): 053003. doi: 10.11884/HPLPB202335.220338
    [2]Wu Zhe, Guan Xianghe, Ji Lailin, Hua Yilin, Gao Yanqi, Sui Zhan, Chen Huacai. Research on multi-pass amplification characteristics of Yb:CNGG active mirror[J]. High Power Laser and Particle Beams, 2023, 35(3): 031003. doi: 10.11884/HPLPB202335.220261
    [3]Wang Sihao, Liao Cheng, Shang Yuping, Zhang Runwu. Agile design of cross-section enhancement of a conducting plate radar through active metasurface[J]. High Power Laser and Particle Beams, 2021, 33(4): 043002. doi: 10.11884/HPLPB202133.200331
    [4]Shen Fei, Li Lu, Xu Xiong, Zhou Hongping, Liu Chao, Guo Zhongyi. Quantitative analysis of active jamming in battlefield electromagnetic environment[J]. High Power Laser and Particle Beams, 2018, 30(1): 013208. doi: 10.11884/HPLPB201830.170267
    [5]Lin Aoxiang, Tang Xuan, Zhan Huan, Li Qi, Wang Yuying, Peng Kun, Ni Li, Wang Xiaolong, Gao Cong, You Yunfeng, Jia Zhaonian, Li Yuwei, You A’ni, Lin Honghuan, Wang Jianjun, Jing Feng. 国产有源光纤成功实现6 kW激光输出[J]. High Power Laser and Particle Beams, 2016, 28(12): 129901. doi: 10.11884/HPLPB201628.160490
    [6]Wang Bo, Li Yudong, Guo Qi, Wen Lin, Sun Jing, Wang Fan, Zhang Xingyao, Ma Liya. Neutron irradiation induced displacement damage effects on CMOS active pixel image sensor[J]. High Power Laser and Particle Beams, 2015, 27(09): 094001. doi: 10.11884/HPLPB201527.094001
    [7]Shi Lei, Fan Yajun, Zhou Jinshan, Zhu Yufeng, Zhu Sitao, Liu Feng, Yi Chaolong, Liu Sheng, Xia Wenfeng, Cao Yu. Tesla transformer for dual-output ultra-wide spectrum HPM pulse generator[J]. High Power Laser and Particle Beams, 2013, 25(07): 1751-1754. doi: 10.3788/HPLPB20132507.1751
    [8]Qiu Jian, Liu Kefu, Lei Yu. Multi-output synchronization trigger for linear transformer driver[J]. High Power Laser and Particle Beams, 2012, 24(04): 765-770. doi: 10.3788/HPLPB20122404.0765
    [9]niu zhifeng, guo jianzeng, ren xiaoming, wang zhenhua. Numerical simulation of large aspect ratio rectangle resonators[J]. High Power Laser and Particle Beams, 2011, 23(07): 0- .
    [10]wang zhiqun, yao shun, cui bifeng, wang zhiyong, shen guangdi. Steady state thermal analysis of multi-active zone tunnel regeneration semiconductor laser[J]. High Power Laser and Particle Beams, 2011, 23(03): 0- .
    [11]zhu yongliang, wang wei. Solid state modulator based on multi-primary winding pulse transformer[J]. High Power Laser and Particle Beams, 2010, 22(04): 0- .
    [12]feng chen, feng guoying, huang yu, li wei, li gang, zhang qiuhui. Misalignment analysis of an active resonator using eigenvector method[J]. High Power Laser and Particle Beams, 2009, 21(07): 0- .
    [13]yin jia-hui, sun feng-ju, qiu ai-ci, liang tian-xue, zeng jiang-tao, chen yu-lan, liu zhi-gang, jiang xiao-feng. Multi-module and multi-output 100 kV triggering generator system with fast rise time and low jitter[J]. High Power Laser and Particle Beams, 2008, 20(12): 0- .
    [14]zhou liang-ji, deng jian-jun, chen lin, xie wei-ping, feng shu-ping, guan yong-chao, wu shou-dong, ren jing, li ye. Influence of volt-second product of magnetic core on output of linear transformer driver[J]. High Power Laser and Particle Beams, 2007, 19(01): 0- .
    [15]xu mei-jian, yu hai-wu, duan wen-tao, jiang xin-ying, yuan xiao-dong, lin dong-hui, wei xiao-feng. Output performance of solid state heat capacity laser with ctiv-mirror and dichromatic coatings[J]. High Power Laser and Particle Beams, 2007, 19(11): 0- .
    [16]wang jin-hua, ding yao-gen, shen bin. Characteristic parameters in klystron output circuit by field analysis method[J]. High Power Laser and Particle Beams, 2005, 17(06): 0- .
    [17]yu dao-jie, niu zhong-xia, yang jian-hong, mo you-quan, zhou dong-fang, hu tao. Characteristics of active lens antenna based on plasma[J]. High Power Laser and Particle Beams, 2004, 16(07): 0- .
    [19]shi zhiquan, tan jichun, wei xiaofeng, man jongzai, zhang xiaoming, yuan jing, yuan xiaodong. BEAMS CONFIGRUATION DESIGN IN TARGET AREA WITH SUCCESSIVE QUADRATIC PROGRAMMING METHOD[J]. High Power Laser and Particle Beams, 1998, 10(01): 0- .
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-102024-112024-122025-012025-022025-032025-042025-052025-062025-072025-082025-090255075100125150
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 23.3 %FULLTEXT: 23.3 %META: 72.1 %META: 72.1 %PDF: 4.6 %PDF: 4.6 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 79.3 %其他: 79.3 %其他: 0.3 %其他: 0.3 %上海: 5.6 %上海: 5.6 %山景城: 2.0 %山景城: 2.0 %张家口: 2.3 %张家口: 2.3 %成都: 0.3 %成都: 0.3 %扬州: 0.3 %扬州: 0.3 %泰州: 0.3 %泰州: 0.3 %石家庄: 1.6 %石家庄: 1.6 %芒廷维尤: 6.2 %芒廷维尤: 6.2 %芝加哥: 0.3 %芝加哥: 0.3 %西宁: 1.0 %西宁: 1.0 %邯郸: 0.3 %邯郸: 0.3 %其他其他上海山景城张家口成都扬州泰州石家庄芒廷维尤芝加哥西宁邯郸

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)

    Article views (218) PDF downloads(14) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return