Volume 37 Issue 12
Nov.  2025
Turn off MathJax
Article Contents
Wang Efeng, Wang Zheyuan, Lei Zihan, et al. Study on the dispersion characteristics of a five-fold helical corrugated waveguide[J]. High Power Laser and Particle Beams, 2025, 37: 123006. doi: 10.11884/HPLPB202537.250183
Citation: Wang Efeng, Wang Zheyuan, Lei Zihan, et al. Study on the dispersion characteristics of a five-fold helical corrugated waveguide[J]. High Power Laser and Particle Beams, 2025, 37: 123006. doi: 10.11884/HPLPB202537.250183

Study on the dispersion characteristics of a five-fold helical corrugated waveguide

doi: 10.11884/HPLPB202537.250183
  • Received Date: 2025-06-25
  • Accepted Date: 2025-08-19
  • Rev Recd Date: 2025-08-19
  • Available Online: 2025-09-02
  • Publish Date: 2025-11-06
  • Background
    Gyrotron traveling-wave tubes (gyro-TWTs) hold significant potential for applications in millimeter-wave radar, communications, electronic countermeasures, and deep-space exploration.
    Purpose
    This paper investigates the high-frequency interaction circuit of a gyro-TWT operating in the Q-band under third-harmonic conditions. With an operational magnetic field of approximately 0.6 T, achievable using conventional solenoid magnets, this design overcomes the limitations associated with superconducting magnets. Furthermore, the adoption of a large-orbit electron beam for interaction addresses the low efficiency inherent in small-orbit electron beams under high-harmonic operation. The interaction structure employs a five-fold helical corrugated waveguide, which not only enhances interaction bandwidth but also effectively suppresses mode competition.
    Methods
    The impedance perturbation method and coupled-wave equations are used.
    Results
    The transmission coupling characteristics of the five-fold Q-band helical waveguide have been derived.
    Conclusions
    The mode coupling mechanisms have been analyzed, and the dispersion equation has been formulated, yielding the dispersion curve of the waveguide. Analysis of the dispersion properties reveals the existence of three eigenmodes. Mode 1 is largely decoupled from Modes 2 and 3. Mode 1 has been selected as the operational mode, as it exhibits broad tangential interaction with the electron beam mode within the 42–47 GHz frequency range. This feature significantly extends the interaction bandwidth while simultaneously suppressing mode competition.
  • loading
  • [1]
    胡银富, 冯进军. 用于雷达的新型真空电子器件[J]. 雷达学报, 2016, 5(4): 350-360 doi: 10.12000/JR16078

    Hu Yinfu, Feng Jinjun. New vacuum electronic devices for radar[J]. Journal of Radars, 2016, 5(4): 350-360 doi: 10.12000/JR16078
    [2]
    郑新, 刘超, 杨明. 大功率毫米波雷达及器件新技术研究[J]. 微波学报, 2020, 36(1): 62-66

    Zheng Xin, Liu Chao, Yang Ming. Research on new technology of high power millimeter wave radar and devices[J]. Journal of Microwaves, 2020, 36(1): 62-66
    [3]
    Thumm M. History, presence and future of gyrotrons[C]//2009 IEEE International Vacuum Electronics Conference. 2009: 37-40.
    [4]
    Yang Jintao, Wang Efeng, Lei Chaojun, et al. Research on a Ka-band large-orbit gyro-TWT with periodic dielectric-loaded structure[J]. Electronics Letters, 2024, 60: e13068. doi: 10.1049/ell2.13068
    [5]
    杨锦涛. Ka波段大回旋电子注周期性介质加载结构回旋行波管研究[D]. 北京: 中国电子科技集团公司电子科学研究院, 2024

    Yang Jintao. Research on a a Ka-band large-orbit gyro-TWT with periodic dielectric-loaded structure[D]. Beijing: Institute of Electronic Science and Technology of China Electronics Technology Group Corporation, 2024
    [6]
    Lei Z, Wang E, Yang J, et al. The comparative study of Gyro-TWT in large-orbit and small-orbit at second harmonic at Ka-band[C]//2024 IEEE International Conference on Plasma Science (ICOPS). 2024: 1.
    [7]
    Denisov G G, Bratman V L, Phelps A D R, et al. Gyro-TWT with a Helical operating waveguide: new possibilities to enhance efficiency and frequency bandwidth[C]//Proc. 21st Int Con infrared and Millimeter Waves. 1997: 289-290.
    [8]
    Denisov G G, Bratman V L, Cross A W, et al. Gyrotron traveling wave amplifier with a helical interaction waveguide[J]. Physical Review Letters, 1998, 81(25): 5680-5683. doi: 10.1103/PhysRevLett.81.5680
    [9]
    王峨锋. 螺旋波纹波导回旋行波管[D]. 成都: 电子科技大学, 2006

    Wang Efeng. Gyrotron traveling wave tube amplifier with the helical wave guide[D]. Chengdu: University of Electronic Science and Technology, 2006
    [10]
    黄宏嘉. 微波原理(卷Ⅰ)[M]. 北京: 科学出版社, 1963: 69-110

    Huang Hongjia. Microwave principles (Volume I)[M]. Beijing: Science Press, 1963: 69-110
    [11]
    王峨锋, 李宏福, 李浩, 等. 螺旋波纹波导研究[J]. 物理学报, 2005, 54(11): 5339-5343 doi: 10.3321/j.issn:1000-3290.2005.11.061

    Wang Efeng, Li Hongfu, Li Hao, et al. Study of the helical wave-guide[J]. Acta Physica Sinica, 2005, 54(11): 5339-5343 doi: 10.3321/j.issn:1000-3290.2005.11.061
    [12]
    钱景仁. 缓变参数不规则波导理论的补充及其应用[J]. 电子学报, 1963(1): 43-50

    Qian Jingren. Supplement to the theory of slow-varying number of irregular waveguides and its applications[J]. Acta Electronica Sinica, 1963(1): 43-50
    [13]
    钱景仁, 来芒, 黄宏嘉. 阻抗微扰概念在计算中继圆波导不规则性中的应用[J]. 电子学报, 1965(1): 67-72

    Qian Jingren, Lai Mang, Huang Hongjia. The concept of impedance-perturbation as applied to geometrical imperfections in circular waveguides in radio relay system[J]. Acta Electronica Sinica, 1965(1): 67-72
    [14]
    王哲远. Q波段无超导五折叠螺旋波纹波导回旋行波管研究[D]. 2022

    Wang Zheyuan. Q-band superconductivity-free five-fold spiral corrugated waveguide rotary traveling wave tube[D]. 2022
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(1)

    Article views (259) PDF downloads(20) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return