Simulation study on relativistic magnetron with online switchable rotation direction of a circularly polarized TE11output mode
-
摘要: 提出了一种圆极化TE11输出模式旋向可在线切换的相对论磁控管。该器件互作用区结构采用同腔型磁控管结构,输出结构采用全腔提取结构,励磁系统采用Helmholtz线圈磁场系统。本文利用全腔提取结构的模式激励理论对该器件的输出模式成分进行了理论分析,利用粒子模拟软件对该器件的工作性能进行了模拟研究。粒子模拟结果表明:在外加电压770 kV和外加轴向磁场0.2 T(方向与微波轴向输出方向同向)的条件下,该器件的工作模式为5π/6模,工作频率为2.35 GHz,输出功率为3.86 GW,功率效率达到55.5%,输出模式为右旋圆极化TE11模式且模式纯度达到99%以上;当外加轴向磁场与微波轴向输出方向反向时,该器件的输出模式即可在线切换为左旋圆极化TE11模式,而其他输出性能基本保持不变。
-
关键词:
- 高功率微波 /
- 相对论磁控管 /
- 全腔提取 /
- 圆极化TE11模式 /
- 输出模式旋向在线切换
Abstract: A relativistic magnetron with online switchable rotation direction of a circularly polarized TE11 output mode is proposed. In the device, the same cavity magnetron is adopted as the beam-wave interaction structure, the all-cavity extraction structure is adopted as the output structure, and the Helmholtz coils system is adopted as the magnetic system. In this paper, the output mode components of the device are theoretically analyzed by the mode excitation theory of all-cavity extraction structure, and the performance of the device is investigated by Particle in Cell simulation. Simulation results show that when the applied voltage is 770 kV and the applied magnetic field that has the same direction with the output microwave is 0.2 T, the device that operates at 5π/6 mode can output a right circularly polarized TE11 mode with the mode purity of more than 99%, the operating frequency of 2.35 GHz and the output power of 3.86 GW, corresponding to the power conversion efficiencyof 55.5%. When the direction of the applied magnetic field is reversed, the rotation direction of the right circularly polarized TE11 mode can be online switched to the left in the condition of keeping other performance of the device. -
表 1 电子轮辐逆时针旋转情况下12腔RM的电子轮辐数n0与输出模式成分的对应关系
Table 1. Output mode components of the 12-cavity RM with the electron spokes rotating counterclockwise
n0 nL,1(TEnL,1) nR,1(TEnR,1) 0 / / 1 1,1 (5,1)* 2 2,1 4,1 3 3,1 3,1 4 4,1 2,1 5 (5,1)* 1,1 6 TEM&(6,1)* 7 1,1 (5,1)* 8 2,1 4,1 9 3,1 3,1 10 4,1 2,1 11 (5,1)* 1,1 12 / / *“()”表示括号中的模式为衰减的高阶模式。 表 2 电子轮辐顺时针旋转情况下12腔RM的电子轮辐数n0与输出模式成分的对应关系
Table 2. Output mode components of the 12-cavity RM with the electron spokes rotating clockwise
n0 nL,1(TEnL,1) nR,1(TEnR,1) 0 / / 1 (5,1)* 1,1 2 4,1 2,1 3 3,1 3,1 4 2,1 4,1 5 1,1 (5,1)* 6 TEM&(6,1)* 7 (5,1)* 1,1 8 4,1 2,1 9 3,1 3,1 10 2,1 4,1 11 1,1 (5,1)* 12 / / *“()”表示括号中的模式为衰减的高阶模式。 表 3 输出模式成分数值计算结果
Table 3. Results of numerical calculation of output mode components
mode percentage/% TEM 0 TE11 99.97 TE21 0.02 TE31 0.01 TE41 0 -
[1] Benford J, Swegle J A, Schamiloglu E. High power microwaves[M]. 2nd ed. London: Taylor & Francis, 2007. [2] Peng Shengren, Yuan Chengwei, Shu Ting, et al. Design of a concentric array radial line slot antenna for high-power microwave application[J]. IEEE Transactions on Plasma Science, 2015, 43(10): 3527-3529. doi: 10.1109/TPS.2015.2392097 [3] Yuan Chengwei, Peng Shengren, Shu Ting, et al. Designs and experiments of a novel radial line slot antenna for high-power microwave application[J]. IEEE Transactions on Antennas and Propagation, 2013, 61(10): 4940-4946. doi: 10.1109/TAP.2013.2273214 [4] Fuks M I, Schamiloglu E. 70% efficient relativistic magnetron with axial extraction of radiation through a horn antenna[J]. IEEE Transactions on Plasma Science, 2010, 38(6): 1302-1312. doi: 10.1109/TPS.2010.2042823 [5] Li Tianming, Li Jiayin, Hu Biao. Studies of the frequency-agile relativistic magnetron[J]. IEEE Transactions on Plasma Science, 2012, 40(5): 1344-1349. doi: 10.1109/TPS.2012.2189025 [6] Li Wei, Liu Yonggui, Zhang Jun, et al. Experimental investigations on the relations between configurations and radiation patterns of a relativistic magnetron with diffraction output[J]. Journal of Applied Physics, 2013, 113: 023304. doi: 10.1063/1.4774245 [7] Liu Meiqin, Liu Chunliang, Fuks M I, et al. Operation characteristics of 12-cavity relativistic magnetron with single-stepped cavities[J]. IEEE Transactions on Plasma Science, 2014, 42(10): 3283-3287. doi: 10.1109/TPS.2014.2311458 [8] Shi Difu, Qian Baoliang, Wang Honggang, et al. A novel TE11 mode axial output structure for a compact relativistic magnetron[J]. Journal of Physics D: Applied Physics, 2016, 49: 135103. doi: 10.1088/0022-3727/49/13/135103 [9] Shi Difu, Qian Baoliang, Wang Honggang, et al. A novel relativistic magnetron with circularly polarized TE11 coaxial waveguide mode[J]. Journal of Physics D: Applied Physics, 2016, 49: 465104. doi: 10.1088/0022-3727/49/46/465104 [10] Shi Difu, Qian Baoliang, Wang Honggang, et al. Theoretical investigations on radiation generation of TEM, linearly or circularly polarized TEn1 coaxial waveguide mode in relativistic magnetron[J]. Scientific Reports, 2017, 7: 1491. doi: 10.1038/s41598-017-01583-w [11] Zhou Jun, Liu Dagang, Liao Chen, et al. CHIPIC: an efficient code for electromagnetic PIC modeling and simulation[J]. IEEE Transactions on Plasma Science, 2009, 37(10): 2002-2011. doi: 10.1109/TPS.2009.2026477 [12] Hoff B W, Greenwood A D, Mardahl P J, et al. All cavity-magnetron axial extraction technique[J]. IEEE Transactions on Plasma Science, 2012, 40(11): 3046-3051. doi: 10.1109/TPS.2012.2217758 [13] Zhang Dian, Zhang Jun, Zhong Huihuang, et al. Analysis of the mode composition of an X-band overmoded O-type Cerenkov high-power microwave oscillator[J]. Physics of Plasmas, 2012, 19: 103102. doi: 10.1063/1.4757636 [14] Zhang Dian, Zhang Jun, Zhong Huihuang, et al. Asymmetric modes decomposition in an overmoded relativistic backward wave oscillator[J]. Physics of Plasmas, 2014, 21: 093102. doi: 10.1063/1.4894480 -