[1] |
Bonnal C, Ruault J M, Desjean M C. Active debris removal: recent progress and current trends[J]. Acta Astronautica, 2013, 85: 51-60. doi: 10.1016/j.actaastro.2012.11.009
|
[2] |
Hou Chongyuan, Yang Yuan, Yang Yikang, et al. Electromagnetic-launch-based method for cost-efficient space debris removal[J]. Open Astronomy, 2020, 29(1): 94-106. doi: 10.1515/astro-2020-0016
|
[3] |
Fang Yingwu, Pan Jun, Luo Yijia, et al. Effects of deorbit evolution on space-based pulse laser irradiating centimeter-scale space debris in LEO[J]. Acta Astronautica, 2019, 165: 184-190. doi: 10.1016/j.actaastro.2019.09.010
|
[4] |
Phipps C. Lisk-Broom: a laser concept for clearing space debris[J]. Laser and Particle Beams, 1995, 13(1): 33-41. doi: 10.1017/S0263034600008831
|
[5] |
Romero-Calvo Á, Cano-Gómez G, Schaub H. Simulation and uncertainty quantification of electron beams in active spacecraft charging scenarios[J]. Journal of Spacecraft and Rockets, 2022, 59(3): 739-750. doi: 10.2514/1.A35190
|
[6] |
戴宏毅, 王同权, 肖亚斌. 带电粒子束自生力对束流扩散的影响[J]. 国防科技大学学报, 2000, 22(4):41-44Dai Hongyi, Wang Tongquan, Xiao Yabin. Research of effect of self-generated space charge force of charged particle beams on its radical spread[J]. Journal of National University of Defense Technology, 2000, 22(4): 41-44
|
[7] |
张树发. 带电粒子束传输中发散范围的计算[J]. 国防科技大学学报, 1982, 4(2):43-54Zhang Shufa. The calculation of diffusive region of charged partical beam in transmiting[J]. Journal of National University of Defense Technology, 1982, 4(2): 43-54
|
[8] |
戴宏毅, 肖亚斌, 王同权, 等. 带电粒子束在真空中传输时的扩散研究[J]. 湖南大学学报(自然科学版), 2001, 28(4):6-10Dai Hongyi, Xiao Yabin, Wang Tongquan, et al. Study of spread of propagation of charged particle beams in vacuum[J]. Journal of Hunan University (Natural Science Edition), 2001, 28(4): 6-10
|
[9] |
胡星. 高能强流带电粒子束在介质中的传输研究[D]. 长沙: 国防科技大学, 2004Hu Xing. Research on propagation of high energy charged particle beams in media materials[D]. Changsha: National University of Defense Technology, 2004
|
[10] |
Hao Jianhong, Wang Xi, Zhang Fang, et al. The influence of magnetic field on the beam quality of relativistic electron beam long-range propagation in near-Earth environment[J]. Plasma Science and Technology, 2021, 23: 115301. doi: 10.1088/2058-6272/ac183a
|
[11] |
焦鹿怀, 葛亚松, 张援农, 等. 地磁场中电子束结构运动的横向约束与周期振荡[J]. 地球物理学报, 2022, 65(10):3691-3703Jiao Luhuai, Ge Yasong, Zhang Yuannong, et al. Transverse confinement and periodic oscillations of electron beam structures traveling in the Earth's magnetic field[J]. Chinese Journal of Geophysics, 2022, 65(10): 3691-3703
|
[12] |
Xue Bixi, Hao Jianhong, Zhao Qiang, et al. Influence of geomagnetic field on the long-range propagation of relativistic electron beam in the atmosphere[J]. IEEE Transactions on Plasma Science, 2020, 48(11): 3871-3876. doi: 10.1109/TPS.2020.3026088
|
[13] |
Miller R B. An introduction to the physics of intense charged particle beam[M]. New York: Springer, 1982: 1-359.
|
[14] |
Khazanov G V, Liemohn M W, Krivorutsky E N, et al. Relativistic electron beam propagation in the Earth’s magnetosphere[J]. Journal of Geophysical Research:Space Physics, 1999, 104(A12): 28587-28599. doi: 10.1029/1999JA900414
|
[15] |
Neubert T, Gilchrist B, Wilderman S, et al. Relativistic electron beam propagation in the earth's atmosphere: modeling results[J]. Geophysical Research Letters, 1996, 23(9): 1009-1012. doi: 10.1029/96GL00247
|
[16] |
Zhang Shichang, Elgin J. Stabilizing effect of the electron-beam self-fields on the phase-space trajectory in a self-amplified spontaneous emission free-electron laser operating in ultraviolet and x-ray spectral ranges[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 2004, 37(4): 875-883.
|
[17] |
White A E, Lewis H G. An adaptive strategy for active debris removal[J]. Advances in Space Research, 2014, 53(8): 1195-1206. doi: 10.1016/j.asr.2014.01.021
|