留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种高功率微波宽带紧耦合偶极子阵列天线

龚鸿州 张建德 袁成卫 张强 许亮

龚鸿州, 张建德, 袁成卫, 等. 一种高功率微波宽带紧耦合偶极子阵列天线[J]. 强激光与粒子束. doi: 10.11884/HPLPB202335.230139
引用本文: 龚鸿州, 张建德, 袁成卫, 等. 一种高功率微波宽带紧耦合偶极子阵列天线[J]. 强激光与粒子束. doi: 10.11884/HPLPB202335.230139
Gong Hongzhou, Zhang Jiande, Yuan Chengwei, et al. A tightly coupled dipole array antenna with high power and broadband[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202335.230139
Citation: Gong Hongzhou, Zhang Jiande, Yuan Chengwei, et al. A tightly coupled dipole array antenna with high power and broadband[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202335.230139

一种高功率微波宽带紧耦合偶极子阵列天线

doi: 10.11884/HPLPB202335.230139
基金项目: 国家自然科学基金项目(62071477,62101577);湖南省自然科学基金项目(2021JJ40660)
详细信息
    作者简介:

    龚鸿州,bhghz@163.com

    通讯作者:

    袁成卫,cwyuan@nudt.edu.cn

  • 中图分类号: TN82

A tightly coupled dipole array antenna with high power and broadband

  • 摘要: 提出了一种新型高功率微波宽带紧耦合偶极子阵列天线。在常规的紧耦合偶极子阵列天线的基础上,该阵列天线通过采用全金属结构设计、天线匹配层和密封层一体化设计以及调节天线结构的手段,获得了宽带高功率性能。仿真结果显示,在0.8~4.0 GHz的范围内,天线未扫描时的驻波比小于2;在16 mm×32 mm单元尺寸内和1个大气压的SF6气体中,功率容量达到0.12 MW;以该单元天线组成10×10阵列,100个单元总尺寸仅为160 mm×320 mm,在1个大气压的SF6气体中,功率容量可以达到12 MW,另外,该天线可实现45°的宽角扫描。该阵列天线的提出为实现高功率微波宽带天线的宽频带、大角度扫描、紧凑化、小型化以及低剖面化提供了参考。
  • 图  1  高功率紧耦合偶极子单元天线模型图及等效电路图

    Figure  1.  High power tightly coupled element antenna

    图  2  紧耦合偶极子单元天线理论阻抗

    Figure  2.  Theoretical impedance of tightly coupled dipole antenna

    图  3  同轴-平板阻抗变换结构

    Figure  3.  Coaxial-planar waveguide transition

    图  4  耦合结构

    Figure  4.  Coupled structure

    图  5  紧耦合偶极子阵列天线

    Figure  5.  Tightly coupled dipole array antenna

    图  6  紧耦合偶极子单元天线的驻波比

    Figure  6.  VSWR of tightly coupled dipole element antenna

    图  7  紧耦合偶极子阵列天线增益

    Figure  7.  Gain of tightly coupled dipole array antenna

    图  8  阵列天线三维辐射方向图

    Figure  8.  Three-dimensional radiation pattern of tightly coupled dipole array antenna

    图  9  紧耦合偶极子天线的E面和H面的波束扫描特性

    Figure  9.  Beam-scanning performance for E-plane and H-plane of tightly coupled dipole array antenna

    图  10  紧耦合偶极子单元天线电场分布图

    Figure  10.  Electric field distribution of tightly coupled dipole element antenna

  • [1] Benford J, Swegle J A, Schamiloglu E. High power microwaves[M]. 3rd ed. Boca Raton: CRC Press, 2016.
    [2] 楚旭, 王朗宁, 朱效庆, 等. 基于光导半导体的MHz高重频可调谐脉冲产生技术研究[J]. 强激光与粒子束, 2022, 34:075006 doi: 10.11884/HPLPB202234.210569

    Chu Xu, Wang Langning, Zhu Xiaoqing, et al. Research on tunable pulse generation with MHz repetition rate based on compensated 4H-SiC photoconductive semiconductor[J]. High Power Laser and Particle Beams, 2022, 34: 075006 doi: 10.11884/HPLPB202234.210569
    [3] Wang Langning, Chu Xu, Wu Qilin, et al. Effects of high-field velocity saturation on the performance of V-doped 6H silicon-carbide photoconductive switches[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2021, 9(4): 4879-4886. doi: 10.1109/JESTPE.2020.3038561
    [4] Prather W D, Baum C E, Torres R J, et al. Survey of worldwide high-power wideband capabilities[J]. IEEE Transactions on Electromagnetic Compatibility, 2004, 46(3): 335-344. doi: 10.1109/TEMC.2004.831826
    [5] Sabath F, Nitsch D, Jung M, et al. Design and setup of a short pulse simulator for susceptibility investigations[J]. IEEE Transactions on Plasma Science, 2002, 30(5): 1722-1727. doi: 10.1109/TPS.2002.805331
    [6] Ryu J, Kim K, Lim T H, et al. Integrated-antenna-source of directive peak electric-field patterns for high-power ultrawideband parabolic reflector system[J]. IEEE Antennas and Wireless Propagation Letters, 2019, 18(4): 727-731. doi: 10.1109/LAWP.2019.2901839
    [7] Wang Shaofei, Xie Yanzhao, Qiu Yangxin. A kind of tightly coupled array with nonuniform short-circuited branches for the radiation of UWB pulses[J]. IEEE Transactions on Antennas and Propagation, 2023, 71(3): 2259-2267. doi: 10.1109/TAP.2023.3240624
    [8] Yu Longzhou, Yuan Chengwei, He Juntao, et al. Beam steerable array antenna based on rectangular waveguide for high-power microwave applications[J]. IEEE Transactions on Plasma Science, 2019, 47(1): 535-541. doi: 10.1109/TPS.2018.2884290
    [9] LI Linfeng, Yan Jiebang, O'Neill C, et al. Coplanar side-fed tightly coupled ultra-wideband array for polar ice sounding[J]. IEEE Transactions on Antennas and Propagation, 2022, 70(6): 4331-4341. doi: 10.1109/TAP.2021.3138544
    [10] Tzanidis I, Sertel K, Volakis J L. UWB low-profile tightly coupled dipole array with integrated balun and edge terminations[J]. IEEE Transactions on Antennas and Propagation, 2013, 61(6): 3017-3025. doi: 10.1109/TAP.2013.2250232
    [11] Munk B A. Finite antenna arrays and FSS[M]. Hoboken: John Wiley & Sons, 2003.
    [12] Wheeler H A. The radiation resistance of an antenna in an infinite array or waveguide[J]. Proceedings of the IRE, 1948, 36(4): 478-487. doi: 10.1109/JRPROC.1948.229650
    [13] Quan Xin, Cao Zhenxin, Zhou Huaimin, et al. Common-mode resonance suppressing surface for tightly coupled array[J]. IEEE Transactions on Antennas and Propagation, 2022, 70(12): 12358-12363. doi: 10.1109/TAP.2022.3209235
    [14] Zhang Zhechen, Wang Bingjun, Yang Feng, et al. Conical conformal tightly coupled dipole arrays co-designed with low-scattering characteristics[J]. IEEE Transactions on Antennas and Propagation, 2022, 70(12): 12352-12357. doi: 10.1109/TAP.2022.3209732
    [15] Wheeler H. Simple relations derived from a phased array made of an infinite current sheet[C]//1964 Antennas and Propagation Society International Symposium. 1964: 157-160.
    [16] 黄志洵, 王晓金. 微波传输线理论与实用技术[M]. 北京: 科学出版社, 1996

    Huang Zhixun, Wang Xiaojin. Theory and practical technology of microwave transmission lines[M]. Beijing: Science Press, 1996
  • 加载中
图(10)
计量
  • 文章访问数:  264
  • HTML全文浏览量:  112
  • PDF下载量:  34
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-18
  • 修回日期:  2023-06-19
  • 录用日期:  2023-06-19
  • 网络出版日期:  2023-06-27

目录

    /

    返回文章
    返回