Investigation of a compact solid-state Marx generator
-
摘要: 提出用P型开关作为充电管、N型开关作为放电管串联形成半桥结构,将其门极也短接,以同一个信号同时驱动充电管和放电管。再利用共原边的串心磁环驱动方案,只需1个半桥电路就可以从原边同时传递驱动功率和信号,同步驱动所有充电管和放电管,大幅简化了脉冲电源结构和尺寸,降低了成本。并以此搭建了24级固态Marx发生器,在10 kΩ阻性负载上,获得了10 kV、1 kHz、5 μs的高压方波脉冲,验证了方案的可行性,且该电源主电路的尺寸仅有20 cm(长)×13 cm(宽)×5.5 cm(高)。Abstract: With the rapid advances in pulsed power technology, high-voltage pulse power supply is gradually developing towards modularization and miniaturization while ensuring high-voltage output. All-solid-state Marx generators generate pulses with flexible parameters adjustment and are increasingly used in a wide range of applications. Synchronous isolated driving is the core technology of solid-state Marx generators. In this paper, a compact solid-state Marx generator based on half-bridge structure was proposed. In each stage, a NPN MOSFET as the charging switch and a PNP MOSFET as the discharging switch forms a half-bridge circuit, and both their gates and sources were short circuited so they can be triggered with the same signal. Using many transformers with their primary windings in series, only one half-bridge circuit on the primary side was used to transfer both the driving power and control signals. Then all the charging switches and discharging switches were driven simultaneously, which greatly simplifies the structure and size of solid-state Marx generators and reduced costs. In this way, a 24-stage solid-state Marx generator prototype was built, and high-voltage square pulses of 10 kV, 1 kHz and 5 μs was obtained on a 10 kΩ resistive load. The feasibility of the scheme is verified, and the length, width and height of the main circuit is only 20 cm×13 cm×5.5 cm.
-
Key words:
- pulse generator /
- Marx generator /
- high-voltage pulses /
- synchronous driving /
- square pulses
-
表 1 驱动源各项参数
Table 1. Various parameters of the driving source
Driving Source TD/μs TR/μs TF/μs PER/μs PW/μs V1/V V2/V Vai 0.1 0.1 0.1 50 19.5 0 −15 Vbi 20 0.1 0.1 50 5 0 15 -
[1] 刘克富. 固态Marx发生器研究进展[J]. 高电压技术, 2015, 41(6):1781-1787Liu Kefu. Research progress in solid-state Marx generators[J]. High Voltage Engineering, 2015, 41(6): 1781-1787 [2] Yu Feng, Sugai T, Tokuchi A, et al. Development of solid-state LTD module using silicon carbide MOSFETs[J]. IEEE Transactions on Plasma Science, 2019, 47(11): 5037-5041. doi: 10.1109/TPS.2019.2943702 [3] 周文鹏, 曾嵘, 赵彪, 等. 大容量全控型压接式IGBT和IGCT器件对比分析: 原理、结构、特性和应用[J]. 中国电机工程学报, 2022, 42(8):2940-2956Zhou Wenpeng, Zeng Rong, Zhao Biao, et al. Comparative analysis of large-capacity fully-controlled press-pack IGBT and IGCT: principle, structure, characteristics and application[J]. Proceedings of the CSEE, 2022, 42(8): 2940-2956 [4] Li Tanyi, Zhan Qiwei, Chen Wenchao, et al. Hexahedron-based control volume finite element method for fully coupled nonlinear drift-diffusion transport equations in semiconductor devices[J]. IEEE Transactions on Microwave Theory and Techniques, 2022, 70(6): 2965-2978. doi: 10.1109/TMTT.2022.3162314 [5] Li Xiang, Li Daohui, Chang Guiqin, et al. High-voltage hybrid IGBT power modules for miniaturization of rolling stock traction inverters[J]. IEEE Transactions on Industrial Electronics, 2022, 69(2): 1266-1275. doi: 10.1109/TIE.2021.3059544 [6] Chokhawala R S, Catt J, Kiraly L. A discussion on IGBT short-circuit behavior and fault protection schemes[J]. IEEE Transactions on Industry Applications, 1995, 31(2): 256-263. doi: 10.1109/28.370271 [7] 唐培伟, 李海峰, 于淼. 电子电气设备中的电路隔离技术分析[J]. 集成电路应用, 2022, 39(11):58-59Tang Peiwei, Li Haifeng, Yu Miao. Analysis of circuit isolation technology in electronic and electrical equipment[J]. Applications of IC, 2022, 39(11): 58-59 [8] Rao Junfeng, Li Zi, Xia Kun, et al. An all solid-state repetitive high-voltage rectangular pulse generator based on magnetic switch[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2015, 22(4): 1976-1982. doi: 10.1109/TDEI.2015.004956 [9] 饶俊峰, 宋子鸣, 王永刚, 等. 基于磁隔离驱动的亚微秒高压脉冲电源[J]. 强激光与粒子束, 2021, 33:115002Rao Junfeng, Song Ziming, Wang Yonggang, et al. Sub-microsecond high voltage pulse power supply based on magnetic isolated driving[J]. High Power Laser and Particle Beams, 2021, 33: 115002 [10] Wu Fan, Ge Hao, El-Refaie A M, et al. Partially-coupled d-q-0 components of magnetically-isolated FSCW IPM machines with open-end-winding drives[J]. IEEE Transactions on Industry Applications, 2020, 56(2): 1397-1407. doi: 10.1109/TIA.2020.2964251 [11] Barnes M J, Wait G D, Figley C B. A FET based frequency and duty factor agile 6 kV pulse generator[C]//Twenty-First International Power Modulator Symposium, Conference. 1994: 97-100. [12] 张睿, 饶俊峰, 李孜, 等. 一种调节Marx电源脉冲边沿的驱动电路[J]. 强激光与粒子束, 2022, 34:095011Zhang Rui, Rao Junfeng, Li Zi, et al. A driver circuit to adjust the pulse edges of Marx generators[J]. High Power Laser and Particle Beams, 2022, 34: 095011 [13] 饶俊峰, 曾彤, 李孜, 等. 固态Marx发生器的过流保护研究[J]. 强激光与粒子束, 2019, 31:125001Rao Junfeng, Zeng Tong, Li Zi, et al. Study on over-current protection of solid-state Marx generators[J]. High Power Laser and Particle Beams, 2019, 31: 125001 [14] Bae J S, Kim T H, Son S H, et al. Compact solid-state Marx modulator with fast switching for nanosecond pulse[J]. IEEE Transactions on Power Electronics, 2022, 37(8): 9406-9414. doi: 10.1109/TPEL.2022.3156586 [15] Ryoo H J, Kim J S, Rim G H, et al. Current loop gate driver circuit for pulsed power supply based on semiconductor switches[C]//2007 16th IEEE International Pulsed Power Conference. 2007: 1622-1626. [16] Song S H, Ryoo H J. Solid-state bipolar pulsed power modulator for high-efficiency production of plasma activated water[J]. IEEE Transactions on Industrial Electronics, 2021, 68(11): 10634-10642. doi: 10.1109/TIE.2020.3031523 -

计量
- 文章访问数: 152
- HTML全文浏览量: 54
- PDF下载量: 24
- 被引次数: 0