Study of the influence of uniform orthogonal background magnetic field on the equivalent inductance of toroidal magnetic cores based on magnetic equivalent circuit network method
-
摘要: 电源中的磁性元件对外部磁场天然敏感,其工作特性直接影响电源的输出特性。实现背景磁场的建模是研究电源中磁性元件受强杂散磁场干扰问题的重要前提,但目前关注这一应用场景的相关研究较少,且常用的电磁场分析方法难以兼顾计算的精度和效率。基于等效磁路网络法提出了一种杂散磁场效应的分析方法,该法将研究对象等效生成磁路单元,离散形成网络模型,并通过求解等效磁路系统方程得到模型的场量分布。以一款具体的环形铁氧体磁芯为例,利用等效磁路网络法计算了环形磁芯在直流激励和均匀正交磁场下的场量分布,分析了背景磁场对其等效电感的影响。通过对比等效磁路网络法与有限元法的计算结果,验证了所提分析方法的准确性与高效性,表明了该方法适用于电源受背景磁场干扰问题的分析。Abstract: The magnetic components in power supplies are naturally sensitive to external magnetic fields, and their operating characteristics directly affect the output characteristics of the power supply. Modeling the background magnetic field is an important prerequisite for the study of the interference of magnetic components in power supplies by strong stray magnetic fields, but few studies have focused on this application scenario, and the commonly used methods for electromagnetic field analysis are difficult to balance accuracy and efficiency. In this paper, we propose a method to analyze the effects of stray magnetic fields based on the equivalent magnetic circuit network method, which discrete the research object into magnetic circuit units, equivalently form a network model, and obtain the field distribution of the model by solving the equations of the equivalent magnetic circuit system. We take a toroidal ferrite core as an example, and use the equivalent circuit network method to calculate the field distribution of the toroidal core under DC excitation and uniform orthogonal magnetic field, and analyze the effect of the background magnetic field on its equivalent inductance. By comparing the results of the equivalent circuit network method with those of the finite element method, the accuracy and efficiency of the proposed analysis method are demonstrated, and it is shown that the method is applicable to the analysis of power supplies disturbed by the background magnetic field.
-
表 1 MECN和FEA的计算资源比较
Table 1. Computational resource comparison of MECN and FEA
method comparison term number of grids simulation time/s MECN 4015 1.97 FEA 112311 135 -
[1] Hourtoule J, van Houtte D, Fejoz P, et al. Magnetic compatibility of standard components for electrical installations: tests on programmable logical controllers and other electronic devices[J]. Fusion Engineering and Design, 2005, 75/79: 179-183. doi: 10.1016/j.fusengdes.2005.06.278 [2] De Lorenzi A, Grando L, Bettanini G, et al. Magnetic compatibility of standard components for electrical installations: tests on low voltage circuit breakers and contactors[J]. Fusion Engineering and Design, 2005, 75/79: 33-39. doi: 10.1016/j.fusengdes.2005.06.267 [3] Schanen J L, Guichon J M, Roudet J, et al. Impact of the physical layout of high-current rectifiers on current division and magnetic field using PEEC method[J]. IEEE Transactions on Industry Applications, 2010, 46(2): 892-900. doi: 10.1109/TIA.2010.2041083 [4] 张晓鹰, 韩少斐, 杨文杰, 等. 兰州重离子治癌装置同步加速器切割磁铁研制[J]. 强激光与粒子束, 2015, 27:095101 doi: 10.11884/HPLPB201527.095101Zhang Xiaoying, Han Shaofei, Yang Wenjie, et al. Design of synchrotron septum magnet for heavy ion medical machine[J]. High Power Laser and Particle Beams, 2015, 27: 095101 doi: 10.11884/HPLPB201527.095101 [5] Roccella R. Static and transient magnetic field maps at level B1 tokamak complex[R]. Technical Report No. QDFMW9, 2019. [6] 杨实, 任书庆, 杨海亮, 等. “闪光二号”5 T脉冲强磁场装置[J]. 强激光与粒子束, 2017, 29:065005 doi: 10.11884/HPLPB201729.160472Yang Shi, Ren Shuqing, Yang Hailiang, et al. 5 T pulsed magnetic field generator of the Flash-Ⅱ accelerator[J]. High Power Laser and Particle Beams, 2017, 29: 065005 doi: 10.11884/HPLPB201729.160472 [7] Wang Rumeng, Yang Yong, Zhang Ming, et al. Finite element analysis of electromagnetic relay under the impact of disturbing magnetic field[J]. Fusion Engineering and Design, 2021, 167: 112344. doi: 10.1016/j.fusengdes.2021.112344 [8] Tong Zikang, Braun W D, Rivas-Davila J M. Design and fabrication of three-dimensional printed air-core transformers for high-frequency power applications[J]. IEEE Transactions on Power Electronics, 2020, 35(8): 8472-8489. doi: 10.1109/TPEL.2020.2963976 [9] Lu Yiwei, Yang Yong, Zhang Ming, et al. Improved square-coil configurations for homogeneous magnetic field generation[J]. IEEE Transactions on Industrial Electronics, 2022, 69(6): 6350-6360. doi: 10.1109/TIE.2021.3094496 [10] Li Kui, Luo Chen, Niu Feng, et al. A new magnetic release design with high anti-interference capability[J]. IEEE Transactions on Magnetics, 2021, 57: 4001009. [11] 张志弘, 韩勤锴, 徐学平, 等. 基于保角变换与等效磁路法的永磁直驱发电机气隙磁场计算[J]. 电工技术学报, 2023, 38(3):703-711Zhang Zhihong, Han Qinkai, Xu Xueping, et al. Air gap magnetic field calculation of permanent magnet direct drive generator based on conformal mapping and magnetic equivalent circuit method[J]. Transactions of China Electrotechnical Society, 2023, 38(3): 703-711 [12] Song I S, Jo B W, Kim K C. Analysis of an IPMSM hybrid magnetic equivalent circuit[J]. Energies, 2021, 14: 5011. doi: 10.3390/en14165011 [13] 李世奇, 佟文明, 贾建国, 等. 考虑磁桥非线性的内置式永磁同步电机空载电磁性能通用解析模型[J]. 电工技术学报, 2023, 38(6):1421-1432Li Shiqi, Tong Wenming, Jia Jianguo, et al. General analytical model of no-load electromagnetic performance of interior permanent magnet synchronous motors considering nonlinearity of magnetic bridges[J]. Transactions of China Electrotechnical Society, 2023, 38(6): 1421-1432 [14] Rasmussen C B, Ritchie E. A magnetic equivalent circuit approach for predicting PM motor performance[C]//Proceedings of the Conference Record of the 1997 IEEE Industry Applications Conference Thirty-Second IAS Annual Meeting. 1997: 10-17. [15] Sewell P, Bradley K J, Clare J C, et al. Efficient dynamic models for induction machines[J]. International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, 1999, 12(6): 449-464. doi: 10.1002/(SICI)1099-1204(199911/12)12:6<449::AID-JNM365>3.0.CO;2-W [16] 徐妲, 赵旭鸣, 林明耀, 等. 基于等效磁路法的轴向磁场磁通切换型永磁电机静态特性分析[J]. 电机与控制应用, 2017, 44(11):79-84 doi: 10.3969/j.issn.1673-6540.2017.11.014Xu Da, Zhao Xuming, Lin Mingyao, et al. Electromagnetic performance analysis of axial field flux-switching permanent magnet machine using equivalent magnetic circuit method[J]. Electric Machines & Control Application, 2017, 44(11): 79-84 doi: 10.3969/j.issn.1673-6540.2017.11.014 [17] 黄允凯, 周涛. 基于等效磁路法的轴向永磁电机效率优化设计[J]. 电工技术学报, 2015, 30(2):73-79 doi: 10.3969/j.issn.1000-6753.2015.02.010Huang Yunkai, Zhou Tao. Efficiency optimization design of axial flux permanent magnet machines using magnetic equivalent circuit[J]. Transactions of China Electrotechnical Society, 2015, 30(2): 73-79 doi: 10.3969/j.issn.1000-6753.2015.02.010 [18] Amrhein M, Krein P T. 3-D magnetic equivalent circuit framework for modeling electromechanical devices[J]. IEEE Transactions on Energy Conversion, 2009, 24(2): 397-405. doi: 10.1109/TEC.2009.2016134 [19] Li Nian, Zhu Jianguo, Lin Mingyao, et al. Analysis of axial field flux-switching memory machine based on 3-D magnetic equivalent circuit network considering magnetic hysteresis[J]. IEEE Transactions on Magnetics, 2019, 55: 7203104. [20] 郭凯凯, 郭有光. 磁通反向直线旋转永磁电机三维非线性等效磁路模型分析[J]. 电工技术学报, 2020, 35(20):4278-4286 doi: 10.19595/j.cnki.1000-6753.tces.191258Guo Kaikai, Guo Youguang. 3D nonlinear equivalent magnetic circuit model analysis of a flux reversal linear rotary permanent magnet machine[J]. Transactions of China Electrotechnical Society, 2020, 35(20): 4278-4286 doi: 10.19595/j.cnki.1000-6753.tces.191258 [21] Watthewaduge G, Bilgin B. Reluctance mesh-based magnetic equivalent circuit modeling of switched reluctance motors for static and dynamic analysis[J]. IEEE Transactions on Transportation Electrification, 2022, 8(2): 2164-2176. doi: 10.1109/TTE.2021.3132885 [22] Kim Y H, Jin C S, Kim S, et al. Analysis of hybrid stepping motor using 3D equivalent magnetic circuit network method based on trapezoidal element[J]. Journal of Applied Physics, 2002, 91(10): 8311-8313. doi: 10.1063/1.1456046 [23] Amrhein M, Krein P T. Magnetic equivalent circuit modeling of induction machines design-oriented approach with extension to 3-D[C]//Proceedings of 2007 IEEE International Electric Machines & Drives Conference. 2007: 1557-1563. [24] Amrhein M. Induction machine performance improvements: design-oriented approaches[D]. Champaign: University of Illinois at Urbana-Champaign, 2007. -

计量
- 文章访问数: 99
- HTML全文浏览量: 25
- PDF下载量: 15
- 被引次数: 0