Design and implementation of a miniaturized high voltage power supply for pulse traveling wave tube
-
摘要: 为满足雷达整机对发射机小型化的需求,针对8~18 GHz宽带脉冲行波管设计了一种小型化高压电源。采用脉冲峰值功率设计方法,结合高压电容储能,实现了行波管在脉冲工作期间高压稳定输出。同时主功率逆变电路采用了移相全桥拓扑结构,高压整流电路采用了碳化硅二极管,这可减轻电源的散热压力,提高高压电源的功率密度。研制的小型化脉冲高压电源,阴极电压−6.5 kV,最大工作脉宽2 ms,峰值功率最大1600 W。与某型号脉冲行波管联调,在脉冲工作期间行波管输出射频信号功率稳定,测试结果验证了该设计方法的可行性。Abstract: In order to meet the demand of radar for miniaturization of transmitter, a miniaturized high-voltage power supply is designed for a certain type of TWT. The high voltage power supply adopts a phase shifted full bridge topology structure, and the high voltage rectifier circuit uses SiC diodes to improve the power density of the power supply. A miniaturized pulse high-voltage power supply has been developed, with a cathode voltage of −6.5 kV, a maximum working pulse width of 2 ms, and a peak power of 1600 W. The joint test with Traveling-wave tube shows that the output RF power of TWT is stable during pulse operation. The test results verify the feasibility of the design method.
-
Key words:
- miniaturization /
- pulse high voltage power supply /
- TWT /
- SiC diode /
- microwave power module
-
表 1 行波管主要电参数
Table 1. main electrical parameters of TWT
cathode voltage Vk first collector voltage Vc1 second collector voltage Vc2 third collector voltage Vc3 −6.5 kV (reference ground) 60%|Vk| (reference Vk) 40%|Vk| (reference Vk) 20%|Vk| (reference Vk) 表 2 部分元件参数
Table 2. partial component parameters
R1/kΩ C20/nF C22/nF C23/nF R6/kΩ 100 1 10 1 51 表 3 收集极电压仿真和实验结果
Table 3. Simulation and experimental results of collector voltage
Simulation results experimental results symbols voltage value/V Ratio to Vk symbols voltage value/V Ratio to Vk Vc1 3884 59.76% Vc1 3880 59.69% Vc2 2574 39.60% Vc2 2568 39.50% Vc3 1272 19.50% Vc3 1290 19.84% -
[1] Duggal R, Donald A, Schoemehl T. Technological evolution of the Microwave Power Module (MPM)[C]//Proceedings of 2009 IEEE International Vacuum Electronics Conference. 2009: 353-354. [2] Trani P, Antoine P. MPM for ECM systems[C]//Proceedings of IVEC 2012. 2012: 149-150. [3] Shandas M K. 2 to 18 GHz, MPM-based high-power transmitter suite for military airborne ECM applications[C]//Proceedings of 2009 IEEE International Vacuum Electronics Conference. 2009: 355-356. [4] Wei Yixue, Gan Yuan, Chen Yinxing, et al. A 50-W broadband Mini-MPM for electronic countermeasure[J]. IEEE Transactions on Electron Devices, 2018, 65(6): 2206-2211. doi: 10.1109/TED.2018.2791723 [5] 郝保良, 魏义学, 陈永利, 等. 微波功率行波管器件的发展和应用[J]. 真空电子技术, 2018(1):10-18 doi: 10.16540/j.cnki.cn11-2485/tn.2018.01.02Hao Baoliang, Wei Yixue, Chen Yongli, et al. Development and application of microwave power traveling wave tubes[J]. Vacuum Electronics, 2018(1): 10-18. doi: 10.16540/j.cnki.cn11-2485/tn.2018.01.02 [6] 崔建玲, 邵淑伟, 孟晓君. 一种机载100W6~18GHz连续波微波功率模块[J]. 真空电子技术, 2015(3):29-31 doi: 10.3969/j.issn.1002-8935.2015.03.009Cui Jianling, Shao Shuwei, Meng Xiaojun. A 100W 6~18 GHz CW MPM for airborne applications[J]. Vacuum Electronics, 2015(3): 29-31. doi: 10.3969/j.issn.1002-8935.2015.03.009 [7] 刘漾, 廖明亮, 刘国亮. 国外微波功率模块现状与发展[J]. 电子信息对抗技术, 2016, 31(1):70-73 doi: 10.3969/j.issn.1674-2230.2016.01.015Liu Yang, Liao Mingliang, Liu Guoliang. The art state of the abroad microwave power module[J]. Electronic Information Warfare Technology, 2016, 31(1): 70-73. doi: 10.3969/j.issn.1674-2230.2016.01.015 [8] 王斌, 王风岩, 周旭, 等. 微波功率行波管及模块的应用发展趋势[J]. 真空电子技术, 2019(2):1-7 doi: 10.16540/j.cnki.cn11-2485/tn.2019.02.01Wang Bin, Wang Fengyan, Zhou Xu, et al. Application and development trend of TWTs and MPMs[J]. Vacuum Electronics, 2019(2): 1-7. doi: 10.16540/j.cnki.cn11-2485/tn.2019.02.01 [9] 高文雷, 刘银川, 郭陈一, 等. 一种超小型行波管高压电源设计[J]. 真空电子技术, 2021(1):71-75 doi: 10.16540/j.cnki.cn11-2485/tn.2021.01.14Gao Wenlei, Liu Yinchuan, Guo Chenyi, et al. Design of an ultra-small high-voltage power supply for traveling wave tubes[J]. Vacuum Electronics, 2021(1): 71-75. doi: 10.16540/j.cnki.cn11-2485/tn.2021.01.14 [10] Kou Jianyong, Wei Yixue, Zhang Hongzhi, et al. A X-band pulsed MPM for radar system[C]//Proceedings of the IEEE 14th International Vacuum Electronics Conference (IVEC). 2013: 1-2. [11] Barbi I, Gules R. Isolated DC-DC converters with high-output voltage for TWTA telecommunication satellite applications[J]. IEEE Transactions on Power Electronics, 2003, 18(4): 975-984. doi: 10.1109/TPEL.2003.813762 [12] 刘银川, 高文雷, 孙建辉, 等. 一种低杂散毫米波行波管电源设计与实现[J]. 真空电子技术, 2022(6):88-93Liu Yinchuan, Gao Wenlei, Sun Jianhui, et al. Design and implementation of a low spurious power supply for millimeter wave TWTs[J]. Vacuum Electronics, 2022(6): 88-93. [13] 廖复疆. 真空电子技术: 信息化武器装备的心脏[M]. 北京: 国防工业出版社, 2008Liao Fujiang. Vacuum electronic technology: the heart of information weapon equipment[M]. Beijing: National Defense Industry Press, 2008. [14] 赵豫京. 数字控制行波管高压电源设计[D]. 郑州: 解放军信息工程大学, 2016Zhao Yujing. Design of TWT high-voltage power supply with digital control[D]. Zhengzhou: PLA Information Engineering University, 2016. [15] Wang Yajun, Liu Jianing. Experimental study of output and ripple voltage from a high frequency voltage multiplying rectifier under PWM rectangle waves[C]//Proceedings of 2011 International Conference on Mechatronic Science, Electric Engineering and Computer (MEC). 2011: 40-43. [16] Katzir L, Shmilovitz D. A matrix-like topology for high-voltage generation[J]. IEEE Transactions on Plasma Science, 2015, 43(10): 3681-3687. doi: 10.1109/TPS.2015.2469101 -

计量
- 文章访问数: 52
- HTML全文浏览量: 19
- PDF下载量: 9
- 被引次数: 0