A design and simulation for fast corrector magnet power supply
-
摘要: 快校正磁铁电源是光源和加速器中重要的设备。随着光源性能的提升,加速器对快校正磁铁电源的性能也提出了更高要求。为满足快校正磁铁电源性能要求和简化设计过程,开展了快校正电源控制策略和仿真研究,并提出了PI控制加二阶相位补偿的方法作为快校正磁铁电源的控制策略;利用伯德图设计快校正磁铁电源的相位补偿参数,以提高电源系统相位裕量。该方法不仅保证了电源系统工作在深度负反馈状态,而且简化了相位补偿的参数计算过程。为了验证控制策略的正确性和有效性,本文提出用压控电压源代替开关器件开展电源性能仿真的方法。仿真结果验证了上述控制策略的可行性和有效性,同时验证了上述仿真方法的有效性和高效性。Abstract: The power supply for fast corrector is an important type of equipment in light sources and accelerators. With the improvement of the performance of the light source, the accelerator has put forward higher requirements for the performance of the fast corrector and their corresponding power supply. In order to meet the requirements of the power supply for fast corrector and simplify their design process, the research of control strategy and simulation about power supply for the fast corrector are developed. This paper proposed a way which use the PI control plus second-order phase compensation as the control strategy of the power supply for fast corrector. For improving the phase margin of the power supply system, the bode diagram is used to design the phase compensation parameters of the power supply fast corrector. This method not only ensures that the power supply system works in the deep negative feedback state, but also simplifies the process of parameter calculation about phase compensation. For the sake of verifying the correctness and effectiveness of the control strategy, this paper proposes a simulation method based on the transfer function of switching power supply which uses voltage controlled voltage source instead of switching devices. The simulation results verify the feasibility and effectiveness of the above control strategies, and verify the effectiveness and efficiency of the above simulation methods.
-
表 1 电源设计参数
Table 1. Design parameters of power supply
current/A magnet inductance/μH magnet resistance/mΩ bandwidth/kHz output ripple ±15 30 30 2 10−4 表 2 仿真参数
Table 2. parameters of simulation
Ui/V Lm/μH Rm/mΩ f /kHz L1,L2/μH C/μF f1/Hz f3/kHz f4/kHz Kp m 1 30 30 200 5 30 350 22 220 2000 1 表 3 输出电流纹波测试结果
Table 3. Test results of output current ripple based on simulation
current setting/A ripple peak/μA stability/10−6 15 140 9.33 10.5 230 15.33 7.5 275 18.33 4.5 320 21.33 1.5 325 21.67 −1.5 325 21.67 −4.5 310 20.67 −7.5 275 18.33 −10.5 230 15.33 −15 135 9.00 表 4 关键仿真事件统计
Table 4. the statistics of key simulation events
model solver average
step sizetotal
stepsrun
time/srun/sim
time
ratiozero
crossing
sourcezero crossing
source
triggeredtotal
zero
crossingtotal
solver
resettotal
solver
exceptionerror
controlCVS+delay auto(ode45) 9.74E-07 307937 2.95 9.84 2 1 6430 6431 0 0 CVS auto(ode45) 9.65E-07 310856 7.9 26.34 2 2 6648 6649 2 2 MOSFET+PWM auto(ode23tb) 9.76E-09 30727523 492.37 1641.25 12 8 480019 480016 0 0 MOSFET+PWM
+delayauto(ode23tb) 9.79E-09 30654829 497.68 1658.93 12 5 498466 498464 0 0 -
[1] 上海硬X射线自由电子激光装置正式开工建设[J]. 核技术, 2018, 41(5): 99Construction of Shanghai high repetition rate X-ray free electron laser and extreme light facility (SHINE) officially started[J]. Nuclear Techniques, 2018, 41(5): 99 [2] Wang D. SHINE: Shanghai high rep-rate XFEL and extreme light facility[C]//International Computational Accelerator Physics Conference. 2018. [3] 吴旭. 衍射极限储存环光源模拟调试研究[D]. 上海: 中国科学院上海应用物理研究所, 2022: 21-23Wu Xu. Commissioning simulations of diffraction limited storage ring light source[D]. Shanghai: Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2022: 21-23 [4] 尚雷, 尚风雷, 孙振彪, 等. 先进同步辐射光源特种电源概述[J]. 强激光与粒子束, 2019, 31:040002 doi: 10.11884/HPLPB201931.190044Shang Lei, Shang Fenglei, Sun Zhenbiao, et al. Overview of special power supplies for advanced synchrotron radiation source[J]. High Power Laser and Particle Beams, 2019, 31: 040002 doi: 10.11884/HPLPB201931.190044 [5] 王晓俊. 加速器磁铁电源解析模型最优控制方法[D]. 兰州: 中国科学院近代物理研究所, 2020: 9-10Wang Xiaojun. Analytic modeling optimal control method of power supply for accelerator magnet[D]. Lanzhou: Institute of Modern Physics, Chinese Academy of Sciences, 2020: 9-10 [6] 杨新华, 王永强, 李继强, 等. 基于SSOGI-RLSMC联合算法的加速器电源纹波抑制[J]. 原子核物理评论, 2021, 38(1):45-51 doi: 10.11804/NuclPhysRev.38.2020042Yang Xinhua, Wang Yongqiang, Li Jiqiang, et al. Accelerator power ripple suppression based on SSOGI-RLSMC combined algorithm[J]. Nuclear Physics Review, 2021, 38(1): 45-51 doi: 10.11804/NuclPhysRev.38.2020042 [7] 卢军祥, 马保慧, 柳恒敏, 等. 粒子加速器电源PID控制方式的改进型研究与应用[J]. 电气传动自动化, 2021, 43(3):17-21,42 doi: 10.3969/j.issn.1005-7277.2021.03.004Lu Junxiang, Ma Baohui, Liu Hengmin, et al. A Research and application of improved PID control mode for particle accelerator power supply[J]. Electric Drive Automation, 2021, 43(3): 17-21,42 doi: 10.3969/j.issn.1005-7277.2021.03.004 [8] Shao Zhuoxia, Liu Peng, Zhang Haiyan, et al. Research on a multilevel corrector magnet power supply based on a buck cascade circuit[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2020, 953: 163083. [9] 周兴文. 基于BBO算法的加速器电源数字控制器的设计与实现[D]. 兰州: 兰州大学, 2020: 22-41Zhou Xingwen. Design and implementation of digital controller for accelerator power supply based on BBO algorithm[D]. Lanzhou: Lanzhou University, 2020: 22-41 [10] 疏坤, 龙锋利, 韩超. 加速器磁铁稳流电源的自适应型控制器设计[J]. 原子能科学技术, 2017, 51(6):1116-1122 doi: 10.7538/yzk.2017.51.06.1116Shu Kun, Long Fengli, Han Chao. Self-adaptive controller design for accelerator stabilized magnet power supply[J]. Atomic Energy Science and Technology, 2017, 51(6): 1116-1122 doi: 10.7538/yzk.2017.51.06.1116 [11] Song B M, Wang Ju. Mathematical modeling and analysis of a wide bandwidth bipolar power supply for the fast correctors in the aps upgrade controller[C]//Proceedings of the 6th International Particle Accelerator Conference. 2015: 3264-3266. [12] 代天立, 张海燕, 邵琢瑕, 等. 合肥光源小功率直流磁铁电源的研究[J]. 强激光与粒子束, 2017, 29:065103 doi: 10.11884/HPLPB201729.160547Dai Tianli, Zhang Haiyan, Shao Zhuoxia, et al. Research on NSRL-HLS low power DC magnet power supply[J]. High Power Laser and Particle Beams, 2017, 29: 065103 doi: 10.11884/HPLPB201729.160547 [13] Liu Kuobin, Liu Chenyao, Wang Baosheng, et al. Reliability assessment and improvement for a fast corrector power supply in TPS[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2018, 896: 53-59. [14] Belikov O V, Kozak V R. A family of precision power supplies for corrector magnets of the European X-ray free-electron laser[J]. Instruments and Experimental Techniques, 2018, 61(5): 707-712. doi: 10.1134/S0020441218040152 [15] 刘鹏, 龙锋利, 李洋, 等. 高能同步辐射光源储存环快校正磁铁电源设计[J]. 原子能科学技术, 2020, 54(11):2252-2257Liu Peng, Long Fengli, Li Yang, et al. Design of fast corrector magnet power supply for HEPS storage ring[J]. Atomic Energy Science and Technology, 2020, 54(11): 2252-2257 [16] Liu Peng, Wang Xu, Long Fengli. Fast corrector power supply design for HEPS[J]. Radiation Detection Technology and Methods, 2020, 4(1): 56-62. doi: 10.1007/s41605-019-0149-4 [17] 王爽, 高朝晖, 陈思宇, 等. 基于Simulink的同步发电机仿真代数环问题研究[J]. 系统仿真学报, 2022, 34(3):482-489 doi: 10.16182/j.issn1004731x.joss.20-0805Wang Shuang, Gao Zhaohui, Chen Siyu, et al. Research on algebraic loop of synchronous generator simulation based on Simulink[J]. Journal of System Simulation, 2022, 34(3): 482-489 doi: 10.16182/j.issn1004731x.joss.20-0805 [18] 张俊峰. 原油换热网络Simulink动态仿真中提高运行速度的问题[J]. 系统仿真技术, 2012, 8(4):321-326 doi: 10.3969/j.issn.1673-1964.2012.04.011Zhang Junfeng. Improve the convergent speed in oil heat exchanger networks Simulink dynamic simulation[J]. System Simulation Technology, 2012, 8(4): 321-326 doi: 10.3969/j.issn.1673-1964.2012.04.011 [19] 耿华, 杨耕. 控制系统仿真的代数环问题及其消除方法[J]. 电机与控制学报, 2006, 10(6):632-635 doi: 10.3969/j.issn.1007-449X.2006.06.020Geng Hua, Yang Geng. Algebraic loop problems in simulations of control systems and the methods to avoid it[J]. Electric Machines and Control, 2006, 10(6): 632-635 doi: 10.3969/j.issn.1007-449X.2006.06.020 -

计量
- 文章访问数: 36
- HTML全文浏览量: 34
- PDF下载量: 9
- 被引次数: 0