Critical field strength estimation for microwave pulse atmospheric breakdown
-
摘要: 针对高功率微波在大气传输中可能出现的击穿现象,文章重点研究了脉冲序列中首次击穿时的延迟脉冲数,发现其与种子电子、脉冲击穿概率以及微波场强密切相关。研究发现,微波场强可通过作用于种子电子间接影响脉冲击穿概率和延迟脉冲数,由此提出利用延迟脉冲数估计微波击穿临界场强的方法,并定义在脉冲击穿概率大于一定值时的微波临界场强作为击穿阈值。文章推导了脉冲击穿概率的估计公式,并对估计量的性能进行了分析,随后利用S波段微波大气击穿模拟装置开展了实验验证。实验结果表明,在一定范围内,重复频率微波脉冲击穿延迟脉冲数仅与种子电子产生率和脉宽成反比,能用于估计脉冲击穿概率,进而给出击穿临界场强。Abstract: In response to the possible breakdown phenomenon of high-power microwave in atmospheric transmission, the article focuses on studying the first breakdown delay pulse number in pulse sequences. It is found that it is closely related to seed electrons, pulse breakdown probability, and microwave field strength. Microwave field strength can indirectly affect the pulse breakdown probability and delay pulse number through seed electrons. A method is proposed to estimate the critical field strength of microwave breakdown using the number of delayed pulses, and the microwave critical field strength is defined as the breakdown threshold when the probability of pulse breakdown is greater than a certain value. In this paper, the estimation formula of pulse impulse breakdown probability is derived, and the performance of the Estimator is analyzed. Then, the experimental verification is carried out using the S band microwave atmospheric breakdown simulation device. The experimental results show that, within a certain range, the number of pulse delays for repetitive frequency microwave pulse breakdown is only inversely proportional to the seed electron generation rate and pulse width, and can be used to estimate the probability of pulse breakdown, thereby giving the critical field strength for breakdown.
-
Key words:
- microwave breakdown /
- critical field strength /
- breakdown probability /
- estimate /
- 111111
-
表 1 实验条件及结果
Table 1. Results of experiments
No. Pressure/
(Pa)Electric intensity/
(kV/cm)Radioactive
source distanceRepetitive
frequency/(Hz)Pulse
width/(ns)p k $ \bar {\mathrm{n}} $ $ \hat {\mathrm{p}} $ A1 8000 1.87 far 20 20000 0.006 13 73.1 0.0055 A2 8000 1.87 near 20 20000 0.03 20 33.4 0.030 B1 1000 0.92 none 20 20000 0.04 20 27.7 0.036 B2 1000 1.29 none 20 20000 0.5 20 2.3 0.43 C1 300 0.92 none 5 2000 0.005 13 102.5 0.0048 C2 300 0.92 none 50 2000 0.005 14 92.7 0.0056 C3 300 0.92 none 500 2000 0.005 12 78.6 0.0047 D1 300 1.29 none 50 20 0 0 0 0 D2 300 1.29 none 50 200 0.003 11 113.2 0.0036 D3 300 1.29 none 50 2000 0.03 20 35.3 0.028 D4 300 1.29 none 50 20000 1 20 1 1 -
[1] Barker R J, Schamiloglu E. 高功率微波源与技术[M]. 刘国治, 周传明, 译. 北京: 清华大学出版社, 2005: 154-158Barker R J, Schamiloglu E. High power microwave source and technology[M]. Liu Guozhi, Zhou Chuanming, trans. Beijing: Tsinghua University Press, 2005: 154-158 [2] 杨浩, 闫二艳, 郑强林, 等. 临近空间高功率微波辐照放电试验技术[J]. 强激光与粒子束, 2019, 31:103216 doi: 10.11884/HPLPB201931.190151Yang Hao, Yan Eryan, Zheng Qianglin, et al. Examination research of high power microwave irradiation discharge in near space[J]. High Power Laser and Particle Beams, 2019, 31: 103216 doi: 10.11884/HPLPB201931.190151 [3] Sprangle P, Hafizi B, Milchberg H, et al. Active remote detection of radioactivity based on electromagnetic signatures[J]. Physics of Plasmas, 2014, 21: 013103. doi: 10.1063/1.4861633 [4] Isaacs J, Miao Chenlong, Sprangle P. Remote monostatic detection of radioactive material by laser-induced breakdown[J]. Physics of Plasmas, 2016, 23: 033507. doi: 10.1063/1.4943404 [5] Nusinovich G S, Pu Ruifeng, Antonsen T M Jr, et al. Development of THz-range Gyrotrons for detection of concealed radioactive materials[J]. Journal of Infrared, Millimeter, and Terahertz Waves, 2011, 32(3): 380-402. doi: 10.1007/s10762-010-9708-y [6] Nusinovich G S, Sprangle P, Semenov V E, et al. On the sensitivity of terahertz gyrotron based systems for remote detection of concealed radioactive materials[J]. Journal of Applied Physics, 2012, 111: 124912. doi: 10.1063/1.4730959 [7] Dorozhkina D, Semenov V, Olsson T, et al. Investigations of time delays in microwave breakdown initiation[J]. Physics of Plasmas, 2006, 13: 013506. doi: 10.1063/1.2158696 [8] 王华杰, 马喆, 龚少博, 等. 高功率微波与大气等离子体相互作用研究[J]. 核聚变与等离子体物理, 2022, 42(s1): 170-174Wang Huajie, Ma Zhe, Gong Shaobo, et al. Study on the interaction between high power microwave and atmospheric plasma. Nuclear Fusion and Plasma Physics, 2022, 42(s1): 170-174 [9] ShimamuraK , YamasakiJ , Miyawaki K, et al. Propagation of microwave breakdown in argon induced by a 28 GHz gyrotron beam[J]. Physics of Plasmas, 2021, 28: 033505. [10] Foster J, Krompholz H, Neuber A. Investigation of the delay time distribution of high power microwave surface flashover[J]. Physics of Plasmas, 2011, 18: 013502. doi: 10.1063/1.3534823 [11] Li Shuguang, Xu Da, Zhang Jie, et al. A new three-level fourth-order compact finite difference scheme for the extended Fisher-Kolmogorov equation[J]. Applied Numerical Mathematics, 2022, 178: 41-51. doi: 10.1016/j.apnum.2022.03.010 [12] 杨浩, 闫二艳, 郑强林, 等. 一种准光反射聚焦微波放电大气等离子体装置[J]. 强激光与粒子束, 2019, 31:053002 doi: 10.11884/HPLPB201931.180350Yang Hao, Yan Eryan, Zheng Qianglin, et al. A microwave plasma system with quasi optical focusing reflector[J]. High Power Laser and Particle Beams, 2019, 31: 053002 doi: 10.11884/HPLPB201931.180350 -

计量
- 文章访问数: 23
- HTML全文浏览量: 12
- PDF下载量: 3
- 被引次数: 0