Primary study on time control technology of active phasedarray based on photoconductive microwave source
-
摘要: 基于宽禁带光导半导体的固态光导微波源是高功率微波产生的一种新途径,该方案具有功率密度高、频带范围宽等特点,且其低时间抖动特性使其在功率合成方面具有巨大潜力,利用光波束形成网络构建光导微波有源相控阵是光导微波器件迈向实用的重要途径。本文分析了光导微波相控阵系统原理,设计了光导微波真延时网络架构,并构建了差分真延时相控阵和考虑相位随机误差的真延时相控阵的理论模型,对影响功率合成和波束扫描的关键因素开展定量分析和仿真验证。结果表明,对于发射1 GHz信号的n×10阵列,延时均方差在10 ps以下时,指向偏差小于0.13°,峰值增益损耗小于2%;延时步进精度在10 ps以下时,指向偏差小于0.2°,峰值增益损耗小于0.03%。由此提出延时精度指标,为未来更高功率、更大规模的光导微波合成技术发展提供参考。Abstract: Solid-state photoconductive microwave source based on wide-bandgap photoconductive semiconductor is a new way of high power microwave generation. The scheme has the characteristics of high power density and wide frequency band, and its low time jitter characteristics make it have great potential in power synthesis. The construction of active phased array of photoconductive microwave devices using optical beamforming network is an important way for the application of photoconductive microwave devices. In this paper, the principle of optical microwave phased array system is analyzed, and the theoretical models of differential true delay phased array and true delay phased array considering phase random error are constructed. The key factors affecting power synthesis and beam scanning are quantitatively analyzed and simulated, and the delay precision index is proposed.The results show that for the n×10 array transmitting signal at 1 GHz, when the delay phase variance is less than 10 ps, the pointing deviation is less than 0.2°and the peak gain loss is less than 2%. When the delay step accuracy is less than 10 ps, the pointing deviation is less than 0.2°, and the peak gain loss is less than 0.03%. On this basis, the real time delay network architecture of photoconductive microwave is designed, which provides a reference for the development of higher power and larger scale photoconductive microwave synthesis technology in the future.
-
表 1 对于1×n阵列,功率合成损耗小于10%时对应的时延均方差
Table 1. The delay variancewhen the loss is less than 10% for a 1×n array antenna
number of array elements 90% of the theoretical gain/dB time delay index at 1 GHz/ps time delay index at 3 GHz/ps 1×4 11.58 26 9 1×8 17.6 30 10 1×10 19.54 32 11 表 2 对于m×n面阵,功率合成损耗小于10%时对应的时延均方差
Table 2. The delay variancewhen the loss is less than 10% for a m×n array antenna
number of array elements 90% of the theoretical gain/dB time delay index at 1 GHz/ps time delay index at 3 GHz/ps 2×4 17.6 29 10 8×8 35.67 41 13-14 8×10 37.6 43 13-14 表 3 相位均方差对相控阵列关键指标的影响
Table 3. The influence of phase variance on the key indicators of phased array
phase standard deviation/(°) element number beam squint/(°) main lobe power/dB side lobe power/dB 10 10 0.40 −0.10 +3.00 15 10 0.64 −0.22 +4.64 20 10 0.94 −0.40 +5.95 -
[1] Kelkar K S, Islam N E, Fessler C M, et al. Design and characterization of silicon carbide photoconductiveswitches for high field applications[J]. Journal of Applied Physics, 2006, 100: 124905. doi: 10.1063/1.2365713 [2] Sullivan J S, Stanley J R. Widebandgap extrinsic photoconductive switches[J]. IEEE Transactions on Plasma Science, 2008, 36(5): 2528-2532. doi: 10.1109/TPS.2008.2002147 [3] Majda-Zdancewicz E, Suproniuk M, Pawłowski M, et al. Current state of photoconductive semiconductor switch engineering[J]. Opto-Electronics Review, 2018, 26(2): 92-102. doi: 10.1016/j.opelre.2018.02.003 [4] Tsao J Y, Chowdhury S, Hollis M A, et al. Ultrawide-bandgap semiconductors: Research opportunities and challenges[J]. Advanced Electronic Materials, 2018, 4: 1600501. doi: 10.1002/aelm.201600501 [5] Rakheja S, Huang L, Hau-Riege S, et al. Performance modeling of silicon carbide photoconductive switches for high-power and high-frequency applications[J]. IEEE Journal of the Electron Devices Society, 2020, 8: 1118-1128. doi: 10.1109/JEDS.2020.3022031 [6] Zhu Li, Hu Long, ShenXin, et al. Improved current and jitter performances of photoconductive semiconductor switch based on reduced graphene oxide/metal electrode[J]. IEEE Electron Device Letters, 2023, 44(2): 289-292. doi: 10.1109/LED.2022.3227174 [7] Hu Long, Su Jiancang, QiuRuicheng, et al. Ultra-wideband microwave generation using a low-energy-triggered bulk gallium arsenide avalanche semiconductorswitch with ultrafast switching[J]. IEEE Transactions on Electron Devices, 2018, 65(4): 1308-1313. doi: 10.1109/TED.2018.2802642 [8] Xiao Longfei, Yang Xianglong, DuanPeng, et al. Effect of electron avalanche breakdown on a high-purity semi-insulating 4H-SiC photoconductive semiconductor switch under intrinsic absorption[J]. Applied Optics, 2018, 57(11): 2804-2808. doi: 10.1364/AO.57.002804 [9] Wang Langning, Chu Xu, Wu Qilin, et al. Effects of high-field velocity saturationon the performance of V-doped 6H silicon carbide photoconductiveswitches[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2021, 9(4): 4879-4886. doi: 10.1109/JESTPE.2020.3038561 [10] He Xuan, Zhang Bin, Liu Shuailin, et al. High-power linear-polarization burst-mode all-fibre laser and generation of frequency-adjustable microwave signal[J]. High Power Laser Science and Engineering, 2021, 9: e13. doi: 10.1017/hpl.2021.11 [11] Shi Nuannuan, Li Wei, Zhu Ninghua, et al. Optically controlled phase array antenna [Invited][J]. Chinese Optics Letters, 2019, 17: 052301. doi: 10.3788/COL201917.052301 [12] 何梓昂, 徐嘉鑫, 周涛, 等. 宽带恒定束宽光学多波束形成技术研究[J]. 半导体光电, 2022, 43(1):51-55HeZi’ang, XuJiaxin, Zhou Tao, et al. Study on wideband constant beamwidth optical multi-beam forming technologies[J]. Semiconductor Optoelectronics, 2022, 43(1): 51-55 [13] Zhao Qingchao, Zhang Yi, Wang Wei, et al. On the frequency dispersion in DBF SAR and digital scalloped beamforming[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(5): 3619-3632. doi: 10.1109/TGRS.2019.2958863 [14] Ye Xingwei, Zhang Fangzheng, Pan Shilong. Optical true time delay unit for multi-beamforming[J]. Optics Express, 2015, 23(8): 10002-10008. doi: 10.1364/OE.23.010002 [15] ZhengPengfei, Wang Chenquan, XuXuemeng, et al. A seven bit silicon optical true time delay line for Ka-band phased array antenna[J]. IEEE Photonics Journal, 2019, 11(4): 1-9. [16] Cheng Qiman, ZhengShilie, Zhang Qiang, et al. An integrated optical beamforming network for two-dimensional phased array radar[J]. Optics Communications, 2021, 489: 126809. doi: 10.1016/j.optcom.2021.126809 [17] Li Shupeng, Wang Xiangchuan, Qing Ting, et al. Optical fiber transfer delay measurement based on phase-derived ranging[J]. IEEE Photonics Technology Letters, 2019, 31(16): 1351-1354. doi: 10.1109/LPT.2019.2926508 [18] 王邦继, 刘庆想, 周磊, 等. 相控阵天线主控系统中实时数据交互[J]. 强激光与粒子束, 2018, 30:013003 doi: 10.11884/HPLPB201830.170289Wang Bangji, Liu Qingxiang, Zhou Lei, et al. Real-time data exchange of beam steering system for phased array antenna[J]. High Power Laser and Particle Beams, 2018, 30: 013003 doi: 10.11884/HPLPB201830.170289 [19] 田中成, 靳学明, 朱玉鹏. 微波光子电子战技术原理与应用[M]. 北京: 科学出版社, 2018: 30-32TianZhongcheng, Jin Xueming, Zhu Yupeng. Principle and application of microwave photonic electronic warfare technology[M]. Beijing: Science Press, 2018: 30-32 [20] Yu Anliang, ZouWeiwen, Li Shuguang, et al. A multi-channel multi-bit programmable photonic beamformerbased on cascaded DWDM[J]. IEEE Photonics Journal, 2014, 6(4): 1-10. [21] BliekL, Wahls S, Visscher I, et al. Automatic delay tuning of a novel ring resonator-based photonic beamformer for a transmit phased array antenna[J]. Journal of Lightwave Technology, 2019, 37(19): 4976-4984. doi: 10.1109/JLT.2019.2926621 [22] 田博宇, 彭英楠, 胡奇琪, 等. 光学相控阵技术研究进展与发展趋势[J]. 强激光与粒子束, 2023, 35:041001 doi: 10.11884/HPLPB202335.220305TianBoyu, PengYingnan, Hu Qiqi, et al. Review of optical phased array technology and its applications[J]. High Power Laser and Particle Beams, 2023, 35: 041001 doi: 10.11884/HPLPB202335.220305 [23] 王建, 蔡海文, 杨飞, 等. 光控微波波束形成器: CN103414519B[P]. 2016-09-07Wang Jian, CaiHaiwen, Yang Fei, et al. Optically controlled microwave beamformers: CN103414519B[P]. 2016-09-07 -

计量
- 文章访问数: 29
- HTML全文浏览量: 15
- PDF下载量: 2
- 被引次数: 0