Measurement of two-dimensional high-frequency motion displacement of piezoelectric shear stack using atomic force microscope tapping trajectories
-
摘要: 针对两轴压电剪切叠堆在高频电压驱动下的二维高频运动的位移测量问题,提出使用(AFM)探针在敲击模式下的加工痕迹测量压电剪切叠堆运动位移的方法,首先制备热塑性聚合物聚甲基丙烯酸甲酯(PMMA)薄膜,随后进行AFM探针敲击加工实验,扫描AMF探针加工轨迹并对其进行后处理,成功得到压电剪切叠堆的二维高频运动位移,实现了以半接触的方式对压电剪切叠堆二维高频复杂运动的准确检测,并依据实验数据对压电剪切叠堆二维运动位移随电压幅值及频率的变化情况进行分析。实验结果表明,在10 Hz~5 kHz的激励信号频率范围内,所提出的方法能准确测量压电剪切叠堆的运动位移。Abstract: Aiming at the displacement measurement problem of two-dimensional high-frequency motion of two-axis piezoelectric shear stacks driven by high-frequency voltage, a method for measuring the displacement of piezoelectric shear stacks by using the machining trajectories of atomic force microscope (AFM) probe in tapping mode was proposed. Firstly, the thermoplastic polymer polymethyl methacrylate (PMMA) film was prepared, and then the AFM probe tapping experiment was carried out. By scanning the processing trajectory of the AFM probe and post-processing it, the two-dimensional high-frequency motion displacement of the piezoelectric shear stack was successfully obtained. Accurate detection of two-dimensional high-frequency complex motion of piezoelectric shear stacks in a semi-contact manner is realized. Based on the experimental data, the variation of the two-dimensional motion displacement of the piezoelectric shear stack with the voltage amplitude and frequency is analyzed.
-
表 1 驱动电压信号数值
Table 1. Driving voltage signal parameters
voltage/V frequency/Hz 0.4/0.4, 0.6/0.6, 0.8/0.8 10, 100, 200, 500, 800, 1000, 1500, 2000 0.4/0.8 10, 100, 200, 500, 800, 1000 0.4/0.4 2500, 3000, 3500, 4000, 4500, 5000, 5500, 6000, 6500, 7000, 7500, 8000 -
[1] 李国会, 李国荣, 徐宏来, 等. 抗拉可压型压电陶瓷性能测试及疲劳试验[J]. 强激光与粒子束, 2023, 35:101007 doi: 10.11884/HPLPB202335.230099Li Guohui, Li Guorong, Xu Honglai, et al. Performance test and fatigue test of tensile/compressible piezoelectric ceramics[J]. High Power Laser and Particle Beams, 2023, 35: 101007 doi: 10.11884/HPLPB202335.230099 [2] Uchino K. The development of piezoelectric materials and the new perspective[M]//Uchino K. Advanced Piezoelectric Materials: Science and Technology. 2nd ed. Duxford, United Kingdom: Woodhead Publishing, 2017: 1-92. [3] 高志山, 王若言, 成晓强. 压电陶瓷装置微位移的光学测量与控制技术[J]. 电光与控制, 2016, 23(8):1-5 doi: 10.3969/j.issn.1671-637X.2016.08.001Gao Zhishan, Wang Ruoyan, Cheng Xiaoqiang. Optical measurement and control of micro displacement for a piezoelectric device[J]. Electronics Optics & Control, 2016, 23(8): 1-5 doi: 10.3969/j.issn.1671-637X.2016.08.001 [4] Ho S T, Jan S J. A piezoelectric motor for precision positioning applications[J]. Precision Engineering, 2016, 43: 285-293. doi: 10.1016/j.precisioneng.2015.08.007 [5] 李欣, 王晓东, 罗怡, 等. 激光陀螺稳频器压电陶瓷片微位移自动化测量[J]. 机电工程技术, 2020, 49(9):89-92,160 doi: 10.3969/j.issn.1009-9492.2020.09.030Li Xin, Wang Xiaodong, Luo Yi, et al. Micro-displacement automatic measurement for piezoelectric ceramic slices of laser gyroscope frequency stabilizer[J]. Mechanical & Electrical Engineering Technology, 2020, 49(9): 89-92,160 doi: 10.3969/j.issn.1009-9492.2020.09.030 [6] Kim M, Moon W, Yoon E, et al. A new capacitive displacement sensor with high accuracy and long-range[J]. Sensors and Actuators A: Physical, 2006, 130/131: 135-141. doi: 10.1016/j.sna.2005.12.012 [7] 李慧鹏, 唐若祥, 吕亚宁, 等. 基于电容传感器的精密压电微位移系统研究[J]. 半导体光电, 2018, 39(1):146-150Li Huipeng, Tang Ruoxiang, Lv Yaning, et al. Research on precision piezoelectric micro-displacement system based on capacitance sensor[J]. Semiconductor Optoelectronics, 2018, 39(1): 146-150 [8] 解晓雯, 严琪琪, 单声宇. 霍耳位移法测量压电陶瓷的压电系数[J]. 压电与声光, 2018, 40(3):362-365 doi: 10.11977/j.issn.1004-2474.2018.03.014Xie Xiaowen, Yan Qiqi, Shan Shengyu. Measurement of transverse piezoelectric coefficient by hall displacement sensor[J]. Piezoelectrics & Acoustooptics, 2018, 40(3): 362-365 doi: 10.11977/j.issn.1004-2474.2018.03.014 [9] 于海娇. 双频激光干涉仪的应用研究综述[J]. 电子测试, 2022(8):124-126 doi: 10.3969/j.issn.1000-8519.2022.08.044Yu Haijiao. Review of application research of dual frequency laser interferometer[J]. Electronic Test, 2022(8): 124-126 doi: 10.3969/j.issn.1000-8519.2022.08.044 [10] 徐胜, 石书丽, 高思田, 等. 剪切压电陶瓷块微位移测量及非线性修正[J]. 计量学报, 2016, 37(6):553-558 doi: 10.3969/j.issn.1000-1158.2016.06.01Xu Sheng, Shi Shuli, Gao Sitian, et al. Measurement and nonlinear correction for micro-displacement of shear piezoceramics stack[J]. Acta Metrologica Sinica, 2016, 37(6): 553-558 doi: 10.3969/j.issn.1000-1158.2016.06.01 [11] 齐艳强, 赵晓丹, 李孟阳, 等. 压电陶瓷微位移的光干涉测量与控制系统[J]. 太原理工大学学报, 2018, 49(4):612-616Qi Yanqiang, Zhao Xiaodan, Li Mengyang, et al. Optical interference measurement and control system of piezoelectric ceramic micro-displacement[J]. Journal of Taiyuan University of Technology, 2018, 49(4): 612-616 [12] He Yang, Geng Yanquan, Yan Yongda, et al. Fabrication of nanoscale pits with high throughput on polymer thin film using AFM tip-based dynamic plowing lithography[J]. Nanoscale Research Letters, 2017, 12: 544. doi: 10.1186/s11671-017-2319-y [13] Hall D A. Review nonlinearity in piezoelectric ceramics[J]. Journal of Materials Science, 2001, 36(19): 4575-4601. doi: 10.1023/A:1017959111402 [14] Xue Bo, Brousseau E, Bowen C. Modelling of a shear-type piezoelectric actuator for AFM-based vibration-assisted nanomachining[J]. International Journal of Mechanical Sciences, 2023, 243: 108048. doi: 10.1016/j.ijmecsci.2022.108048 -