[1] |
Hjalmarson Å. New astronomy with the Odin satellite[J]. Advances in Space Research, 2004, 34(3): 504-510. doi: 10.1016/j.asr.2003.05.024
|
[2] |
Waters J W, Froidevaux L, Harwood R S, et al. The Earth Observing System Microwave Limb Sounder (EOS MLS) on the Aura satellite[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(5): 1075-1092. doi: 10.1109/TGRS.2006.873771
|
[3] |
Cooper K B, Dengler R J, Llombart N, et al. Penetrating 3-D imaging at 4- and 25-m range using a submillimeter-wave radar[J]. IEEE Transactions on Microwave Theory and Techniques, 2008, 56(12): 2771-2778. doi: 10.1109/TMTT.2008.2007081
|
[4] |
Gehrz R D, Becklin E E. The Stratospheric Observatory for Infrared Astronomy (SOFIA)[C]//Proceedings of SPIE 7012, Ground-based and Airborne Telescopes II. 2008: 70121R.
|
[5] |
Cooper K B, Reck T A, Jung-Kubiak C, et al. Transceiver array development for submillimeter-wave imaging radars[C]//Proceedings of SPIE 8715, Passive and Active Millimeter-Wave Imaging XVI. 2013: 87150A.
|
[6] |
Siegel P H. Terahertz technology[J]. IEEE Transactions on Microwave Theory and Techniques, 2002, 50(3): 910-928. doi: 10.1109/22.989974
|
[7] |
Erickson N R, Rizzi B J, Crowe T W. A high power doubler for 174 GHz using a planar diode array[C]//Fourth International Symposium on Space Terahertz Technology. 1993: 287-296.
|
[8] |
Maestrini A, Ward J S, Gill J J, et al. A 540-640-GHz high-efficiency four-anode frequency tripler[J]. IEEE Transactions on Microwave Theory and Techniques, 2005, 53(9): 2835-2843. doi: 10.1109/TMTT.2005.854174
|
[9] |
Siles Perez J V, Chattopadhyay G, Lee C, et al. On-chip power-combining for high-power schottky diode based frequency multipliers: 9143084B2[P]. 2015-09-22.
|
[10] |
Siles J V, Jung-Kubiak C, Reck T, et al. A dual-output 550 GHz frequency tripler featuring ultra-compact silicon micromachining packaging and enhanced power-handling capabilities[C]//Proceedings of the 45th European Microwave Conference. 2015: 845-848.
|
[11] |
Pascual E, Rengel R, Martin M J. Monte Carlo analysis of tunneling and thermionic transport in a reverse biased Schottky diode[C]//Spanish Conference on Electron Devices. 2007: 108-111.
|
[12] |
Tang A Y, Drakinskiy V, Yhland K, et al. Analytical extraction of a Schottky diode model from broadband S-parameters[J]. IEEE Transactions on Microwave Theory and Techniques, 2013, 61(5): 1870-1878. doi: 10.1109/TMTT.2013.2251655
|
[13] |
Tang A Y, Schlecht E, Lin R, et al. Electro-thermal model for multi-anode Schottky diode multipliers[J]. IEEE Transactions on Terahertz Science and Technology, 2012, 2(3): 290-298. doi: 10.1109/TTHZ.2012.2189913
|
[14] |
Tang A Y. Modelling of terahertz planar Schottky diodes[D]. Göteborg: Chalmers University of Technology, 2011.
|
[15] |
Stake J, Dillner L, Jones S H, et al. Effects of self-heating on planar heterostructure barrier varactor diodes[J]. IEEE Transactions on Electron Devices, 1998, 45(11): 2298-2303. doi: 10.1109/16.726644
|
[16] |
Tian Yaoling, Huang Kun, He Yue, et al. A novel balanced frequency tripler with improved power capacity for submillimeter-wave application[J]. IEEE Microwave and Wireless Components Letters, 2021, 31(8): 925-928. doi: 10.1109/LMWC.2021.3084622
|
[17] |
Tian Yaoling, Liu Ge, Li Li, et al. High efficiency 285 GHz tripler based on face-to-face differential configuration[J]. Journal of Infrared and Millimeter Waves, 2022, 41(4): 739-744.
|
[18] |
Maestrini A, Ward J S, Tripon-Canseliet C, et al. In-phase power-combined frequency triplers at 300 GHz[J]. IEEE Microwave and Wireless Components Letters, 2008, 18(3): 218-220. doi: 10.1109/LMWC.2008.916820
|
[19] |
Guo Jian, Xu Zhengbin, Qian Cheng, et al. A novel balanced frequency tripler for millimeter-wave and submillimeter-wave application[C]//IEEE MTT-S International Microwave Workshop Series on Millimeter Wave Wireless Technology and Applications. 2012: 1-4.
|
[20] |
Li Yuhang, Zhang Dehai, Meng Jin, et al. 335 GHz unbalanced Schottky diode frequency tripler[J]. Journal of Infrared and Millimeter Waves, 2023, 42(2): 229-233.
|