留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面向战斗力指数定量分析的局部逼近方法

郭恩泽 刘国彬 邹永杰 刘正堂 孙健 张洪德

郭恩泽, 刘国彬, 邹永杰, 等. 面向战斗力指数定量分析的局部逼近方法[J]. 强激光与粒子束. doi: 10.11884/HPLPB202436.240163
引用本文: 郭恩泽, 刘国彬, 邹永杰, 等. 面向战斗力指数定量分析的局部逼近方法[J]. 强激光与粒子束. doi: 10.11884/HPLPB202436.240163
Guo Enze, Liu Guobin, Zou Yongjie, et al. A novel local approximation approach for quantitative analysis of combat power index[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202436.240163
Citation: Guo Enze, Liu Guobin, Zou Yongjie, et al. A novel local approximation approach for quantitative analysis of combat power index[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202436.240163

面向战斗力指数定量分析的局部逼近方法

doi: 10.11884/HPLPB202436.240163
基金项目: 重庆市自然科学基金项目(CSTB2022NSCQ-MSX1257)
详细信息
    作者简介:

    郭恩泽,g1903632257@163.com

    通讯作者:

    张洪德,hdzhang264@126.com

  • 中图分类号: TP183

A novel local approximation approach for quantitative analysis of combat power index

  • 摘要: 战斗力指数的定量化研究是军队实现信息化建设必须解决的难题。针对战斗力指数研究存在定量研究较少、方法精度较低、鲁棒性不强等问题,以及战斗力指数函数本身为复杂规则主导、多变量数学模型、影响因素强耦合等难以拟合的限制,受模糊逻辑理论中对规则的数学分析方法启发,提出了一种基于局部逼近的战斗力指数函数拟合方法,并结合神经网络强大的自学习和自推导能力,构建了相应的基于径向基神经网络(RBF)的定量计算模型。仿真对比实验表明,该方法比利用全局逼近的方法误差率低约2%和6%,且表现出更强的鲁棒性。该计算方法具有较强的实用性,而且具备向其他军事领域迁移的可能性,具备良好的工程应用前景。
  • 图  1  前馈神经网络结构图

    Figure  1.  Structure diagram of feedforward neural network

    图  2  战斗力指数计算模型

    Figure  2.  Calculation model for combat effectiveness index

    图  3  不同方法的性能对比

    Figure  3.  Performance comparison of different methods

    图  4  不同方法对各样本的误差率对比图

    Figure  4.  Comparison chart of error rates of different methods for each sample

    表  1  某系统指标与对应战斗力指数(训练样本)

    Table  1.   A certain system indicator and corresponding combat effectiveness index (training sets)

    No. $ X1 $ $ X2 $ $ X3 $ $ X4 $ $ X5 $ $ X6 $ $ X7 $ Index
    1 0.008 0.3839 0.4643 0.2578 0.4651 1 1 0.1
    2 0.3867 0.6727 0.4041 0.987 0.0361 1 0 0.6567
    3 0.6247 0.0751 0.3834 0.9626 0.3681 0 1 0.4802
    4 0.8994 0.6203 0.3388 0.8733 0.4711 0 1 0.5627
    5 0.7807 0.602 0.5827 0.7677 0.3319 0 0 0.4575
    6 0.5801 0.6814 0.4982 0.5691 0.6989 0 1 0.4807
    7 0.6861 0.9761 0.5345 0.0551 0.3001 1 0 0.5307
    8 0.9918 0.5446 0.1884 0.8012 0.2498 0 1 0.5325
    9 0.1517 0.3264 0.9244 0.4749 0.7514 1 1 0.6498
    10 0.006 0.3241 0.1342 0.0568 0.2861 1 1 0.1
    11 0.3237 0.6433 0.7615 0.4408 0.4257 0 1 0.3989
    12 0.1183 0.7009 0.8832 0.9238 0.7334 1 1 0.6995
    13 0.3798 0.3365 0.1264 0.2612 0.3381 1 1 0.5844
    14 0.5788 0.9003 0.5844 0.1539 0.1008 1 0 0.5619
    15 0.4714 0.0867 0.4697 0.0271 0.5766 1 0 0.4416
    16 0.8938 0.0379 0.7388 0.2354 0.4514 1 0 0.6032
    17 0.1562 0.2596 0.2821 0.8051 0.6745 0 1 0.3453
    18 0.395 0.945 0.0852 0.8615 0.8387 1 0 0.6977
    19 0.3299 0.7363 0.8801 0.8847 0.7278 0 1 0.5007
    20 0.0009 0.5256 0.4316 0.3064 0.7449 0 0 0.1
    21 0.2083 0.896 0.2374 0.3735 0.8784 0 0 0.298
    22 0.2117 0.7423 0.8269 0.1996 0.0336 1 0 0.5211
    23 0.6431 0.4766 0.1992 0.8318 0.1808 0 0 0.3949
    24 0.9829 0.961 0.4124 0.102 0.6919 1 0 0.604
    25 0.2151 0.2478 0.8876 0.2154 0.8752 0 1 0.3405
    26 0.3991 0.565 0.31 0.3312 0.2412 0 0 0.2705
    27 0.8604 0.2769 0.6531 0.3415 0.0994 1 1 0.6933
    28 0.4469 0.682 0.826 0.6095 0.7994 1 0 0.7053
    29 0.7401 0.6015 0.51 0.3157 0.8019 0 1 0.4477
    30 0.001 0.5982 0.7531 0.6396 0.8263 0 1 0.1
    31 0.1449 0.3029 0.3186 0.0775 0.0949 1 0 0.408
    32 0.5117 0.3233 0.8123 0.506 0.633 1 1 0.7331
    33 0.8103 0.1576 0.8691 0.5492 0.8843 1 1 0.8037
    34 0.2604 0.5971 0.2858 0.7397 0.2944 0 0 0.3059
    35 0.1761 0.5774 0.0948 0.9358 0.2587 0 0 0.2748
    36 0.3009 0.8167 0.4445 0.0062 0.5587 1 1 0.5218
    37 0.3245 0.217 0.7227 0.1615 0.8302 0 0 0.2582
    38 0.3474 0.1725 0.3881 0.9169 0.7404 0 0 0.3641
    39 0.5416 0.6636 0.7911 0.0836 0.184 1 0 0.527
    40 0.002 0.3116 0.6413 0.354 0.8512 0 1 0.1
    41 0.6394 0.7194 0.0269 0.2757 0.6934 0 0 0.3169
    42 0.5142 0.1377 0.0843 0.1952 0.0695 0 0 0.1917
    43 0.3289 0.4986 0.5695 0.3578 0.9369 1 1 0.6825
    44 0.7178 0.3608 0.9264 0.2859 0.5528 1 1 0.716
    45 0.6938 0.1595 0.1447 0.0897 0.5322 0 0 0.2009
    46 0.5764 0.3444 0.6178 0.1244 0.3252 1 1 0.5985
    47 0.8081 0.0461 0.3649 0.4704 0.7324 0 0 0.3727
    48 0.4148 0.3836 0.9863 0.5829 0.1511 1 0 0.6372
    49 0.3204 0.2348 0.5684 0.3432 0.2111 1 1 0.6068
    50 0.0005 0.3179 0.8168 0.5232 0.3022 0 0 0.1
    下载: 导出CSV

    表  2  某系统指标与对应战斗力指数(测试样本)

    Table  2.   A certain system indicator and corresponding combat effectiveness index (testing sets)

    $ X1 $$ X2 $$ X3 $$ X4 $$ X5 $$ X6 $$ X7 $Index
    10.00050.20670.11390.8710.7812010.1
    20.1880.17950.23920.76790.895010.3629
    30.23530.66510.22270.46760.1871110.6112
    40.24760.60420.65180.42040.8361110.68
    50.15310.03440.94270.91310.8684100.6126
    60.38360.98370.87840.30390.7341100.6526
    70.18030.24270.12580.46980.4155100.5014
    80.30090.96560.89440.41220.7063110.7264
    90.16530.78840.040.18220.641010.282
    100.0020.0360.35120.37920.7557000.1
    110.81810.08790.74920.06870.9076000.2601
    120.18210.78940.95510.87340.2748100.6354
    130.84780.06280.40180.09430.3653100.501
    140.23540.26790.70040.5210.774000.3096
    150.25370.26420.51440.5220.637010.3634
    160.84090.20520.51020.53750.0479000.3665
    170.24540.32390.0930.49910.2922100.5214
    180.20870.02360.60180.55210.5491010.3359
    190.77430.2130.01060.19270.9038100.5665
    200.0040.26460.06950.84390.4707010.1
    下载: 导出CSV
  • [1] 李璟. 战斗力解析[M]. 北京: 国防大学出版社, 2013

    Li Jing. Analysis of combat effectiveness[M]. Beijing: National Defense University Press, 2013
    [2] Rai R N, Bolia N. Optimal decision support for air power potential[J]. IEEE Transactions on Engineering Management, 2014, 61(2): 310-322. doi: 10.1109/TEM.2013.2293420
    [3] 何帆, 李其祥, 黄东. 基于灰色层次模型的新型装备战斗力评估[J]. 火力与指挥控制, 2016, 41(11):129-133 doi: 10.3969/j.issn.1002-0640.2016.11.030

    He Fan, Li Qixiang, Huang Dong. Evaluation of capability of new-type equipment based on grey-AHP[J]. Fire Control & Command Control, 2016, 41(11): 129-133 doi: 10.3969/j.issn.1002-0640.2016.11.030
    [4] Qi Zongfeng, Wang Guosheng. Effectiveness evaluation of electronic warfare command and control system based on grey AHP method[J]. Journal of Chemical and Pharmaceutical Research, 2014, 6(7): 535-542.
    [5] 曹冠平, 王跃利, 张立韬. 关联规则挖掘在作战实验数据分析中的应用[J]. 指挥控制与仿真, 2019, 41(2):70-74 doi: 10.3969/j.issn.1673-3819.2019.02.014

    Cao Guanping, Wang Yueli, Zhang Litao. Application of association rule mining in combat experiment data analysis[J]. Command Control & Simulation, 2019, 41(2): 70-74 doi: 10.3969/j.issn.1673-3819.2019.02.014
    [6] 刘玮, 周华任, 黄春艳. 基于灰色-熵权法的合成旅装备战斗力评估[J]. 计算机仿真, 2023, 40(4):26-30 doi: 10.3969/j.issn.1006-9348.2023.04.006

    Liu Wei, Zhou Huaren, Huang Chunyan. Combat effectiveness evaluation of synthetic brigade equipment based on combined grey entropy weight method[J]. Computer Simulation, 2023, 40(4): 26-30 doi: 10.3969/j.issn.1006-9348.2023.04.006
    [7] 文博宇, 胡磊, 张岐龙, 等. Dynamic trajectory quality evaluation of ballistic missiles based on TOPSIS[J]. 舰船电子对抗, 2022, 45(1):45-49

    Wen Boyu, Hu Lei, Zhang Qilong, et al. Radar emitter signal recognition based on extended residual network[J]. Shipboard Electronic Countermeasure, 2022, 45(1): 45-49
    [8] 卜广志. 基于AOE模型的装备对作战体系的贡献率评估方法[J]. 火力与指挥控制, 2020, 45(12):18-22 doi: 10.3969/j.issn.1002-0640.2020.12.004

    Bu Guangzhi. An assessment method of armament contribution to operational system based on AOE model[J]. Fire Control & Command Control, 2020, 45(12): 18-22 doi: 10.3969/j.issn.1002-0640.2020.12.004
    [9] 薛辉, 王源, 张天鹏, 等. 随机组合约束下的联合火力打击弹药需求预测模型[J]. 兵工学报, 2019, 40(8):1716-1724 doi: 10.3969/j.issn.1000-1093.2019.08.022

    Xue Hui, Wang Yuan, Zhang Tianpeng, et al. Demand forecasting model for joint fire strike ammunition under stochastic combination constraints[J]. Acta Armamentarii, 2019, 40(8): 1716-1724 doi: 10.3969/j.issn.1000-1093.2019.08.022
    [10] 薛辉, 刘铁林, 张鹏. 基于损失交换比的武器装备回合战斗力指数评估[J]. 装甲兵工程学院学报, 2018, 32(2):7-12 doi: 10.3969/j.issn.1672-1497.2018.02.002

    Xue Hui, Liu Tielin, Zhang Peng. Evaluation of round combat effectiveness index for weapon equipment based on loss exchange ratio[J]. Journal of Academy of Armored Force Engineering, 2018, 32(2): 7-12 doi: 10.3969/j.issn.1672-1497.2018.02.002
    [11] 杨鹏, 倪小清. 登陆作战的多维战斗力指数—兰彻斯特方程[J]. 舰船电子工程, 2016, 36(5):27-30 doi: 10.3969/j.issn.1627-9730.2016.05.007

    Yang Peng, Ni Xiaoqing. Lanchester equation based on multi-domain fighting index[J]. Ship Electronic Engineering, 2016, 36(5): 27-30 doi: 10.3969/j.issn.1627-9730.2016.05.007
    [12] 董泽委, 胡起伟, 孙宝琛. 基于BP神经网络的集群装备战斗力指数评估[J]. 火力与指挥控制, 2011, 36(11):87-90 doi: 10.3969/j.issn.1002-0640.2011.11.023

    Dong Zewei, Hu Qiwei, Sun Baochen. Equipment combat power index assessment based on BP neural network[J]. Fire Control & Command Control, 2011, 36(11): 87-90 doi: 10.3969/j.issn.1002-0640.2011.11.023
    [13] 郭恩泽, 何斌斌, 武艺楠, 等. 面向战斗力指数计算的BP神经网络设计研究[J]. 舰船电子对抗, 2024, 48(3):456-462

    Guo Enze, He Binbin, Wu Yinan, et al. Research on the design of BP Neural network for calculating combat effectiveness index[J]. Shipboard Electronic Countermeasure, 2024, 48(3): 456-462
    [14] Goh A T C. Back-propagation neural networks for modeling complex systems[J]. Artificial Intelligence in Engineering, 1995, 9(3): 143-151. doi: 10.1016/0954-1810(94)00011-S
    [15] Wang Hanyu, Dong Helei, Zhang Lei, et al. Prediction of dynamic temperature rise of thermocouple sensors based on genetic algorithm-back propagation neural network[J]. IEEE Sensors Journal, 2022, 22(24): 24121-24129. doi: 10.1109/JSEN.2022.3217826
    [16] Rumelhart D E, Hinton G E, Williams R J. Learning representations by back-propagating errors[J]. Nature, 1986, 323(6088): 533-536. doi: 10.1038/323533a0
    [17] Li He, Guo Shuxiang, Wang Hanze, et al. Subject-independent continuous estimation of sEMG-based joint angles using both multisource domain adaptation and BP neural network[J]. IEEE Transactions on Instrumentation and Measurement, 2023, 72: 4000910.
    [18] Hou J, Yao D, Wu F, et al. Online vehicle velocity prediction using an adaptive radial basis function neural network[J]. IEEE Transactions on Vehicular Technology, 2021, 70(4): 3113-3122. doi: 10.1109/TVT.2021.3063483
    [19] Gong Maoguo, Liu Jia, Qin A K, et al. Evolving deep neural networks via cooperative coevolution with backpropagation[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021, 32(1): 420-434. doi: 10.1109/TNNLS.2020.2978857
    [20] Gao Xinyu, Mou Jun, Banerjee S, et al. Color-gray multi-image hybrid compression–encryption scheme based on BP neural network and knight tour[J]. IEEE Transactions on Cybernetics, 2023, 53(8): 5037-5047. doi: 10.1109/TCYB.2023.3267785
    [21] Pan Xiuqin, Zhou Wangsheng, Lu Yong, et al. Prediction of network traffic of smart cities based on DE-BP neural network[J]. IEEE Access, 2019, 7: 55807-55816. doi: 10.1109/ACCESS.2019.2913017
    [22] Lu Qidong, Yang Rui, Zhong Maiying, et al. An improved fault diagnosis method of rotating machinery using sensitive features and RLS-BP neural network[J]. IEEE Transactions on Instrumentation and Measurement, 2020, 69(4): 1585-1593. doi: 10.1109/TIM.2019.2913057
    [23] Zhao Liang, Yin Zhihong, Yu Keping, et al. A fuzzy logic-based intelligent multiattribute routing scheme for two-layered SDVNs[J]. IEEE Transactions on Network and Service Management, 2022, 19(4): 4189-4200. doi: 10.1109/TNSM.2022.3202741
    [24] Hornik K, Stinchcombe M, White H. Multilayer feedforward networks are universal approximators[J]. Neural Networks, 1989, 2(5): 359-366. doi: 10.1016/0893-6080(89)90020-8
    [25] LeCun Y, Bengio Y, Hinton G. Deep learning[J]. Nature, 2015, 521(7553): 436-444. doi: 10.1038/nature14539
    [26] Xu Bing, Wang Naiyan, Chen Tianqi, et al. Empirical evaluation of rectified activations in convolutional network[DB/OL]. arXiv preprint arXiv: 1505.00853, 2015.
    [27] Nitta T, Kuroe Y. Hyperbolic gradient operator and hyperbolic back-propagation learning algorithms[J]. IEEE transactions on neural networks and learning systems, 2017, 29(5): 1689-1702.
    [28] Freitas A A. Comprehensible classification models: a position paper[J]. ACM SIGKDD Explorations Newsletter, 2013, 15(1): 1-10.
    [29] Lakkaraju H, Bach S H, Leskovec J. Interpretable decision sets: a joint framework for description and prediction[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2016: 1675-1684.
    [30] Takagi T, Sugeno M. Fuzzy identification of systems and its applications to modeling and control[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1985, SMC-15(1): 116-132. doi: 10.1109/TSMC.1985.6313399
    [31] Fritzke B. Fast learning with incremental RBF networks[J]. Neural Processing Letters, 1994, 1(1): 2-5. doi: 10.1007/BF02312392
    [32] Jin Yaochu, Sendhoff B. Extracting interpretable fuzzy rules from RBF networks[J]. Neural Processing Letters, 2003, 17(2): 149-164. doi: 10.1023/A:1023642126478
    [33] Morán A, Parrilla L, Roca M, et al. Digital implementation of radial basis function neural networks based on stochastic computing[J]. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2023, 13(1): 257-269. doi: 10.1109/JETCAS.2022.3231708
    [34] Su Bowen, Zhang Fan, Huang Panfeng. Stability analysis and RBF neural network control of second-order nonlinear satellite system[J]. IEEE Transactions on Aerospace and Electronic Systems, 2023, 59(4): 4575-4589. doi: 10.1109/TAES.2023.3243582
    [35] Wang Jinpeng, Zhou Yang, Guan Xin, et al. A hybrid predicting model for the daily photovoltaic output based on fuzzy clustering of meteorological data and joint algorithm of GAPS and RBF neural network[J]. IEEE Access, 2022, 10: 30005-30017. doi: 10.1109/ACCESS.2022.3159655
    [36] Liu Xin, He Hai. Fault diagnosis for TE process using RBF neural network[J]. IEEE Access, 2021, 9: 118453-118460. doi: 10.1109/ACCESS.2021.3107360
    [37] Fan Fenglei, Wang Ge. Fuzzy logic interpretation of quadratic networks[J]. Neurocomputing, 2020, 374: 10-21. doi: 10.1016/j.neucom.2019.09.001
    [38] Fang Baofu, Zheng Caiming, Wang Hao, et al. Two-stream fused fuzzy deep neural network for multiagent learning[J]. IEEE Transactions on Fuzzy Systems, 2023, 31(2): 511-520. doi: 10.1109/TFUZZ.2022.3214001
    [39] Xu Tao, Zhao Youqun, Wang Qiuwei, et al. An adaptive inverse model control method of vehicle yaw stability with active front steering based on adaptive RBF neural networks[J]. IEEE Transactions on Vehicular Technology, 2023, 72(11): 13873-13887.
    [40] Han Honggui, Wu Xiaolong, Zhang Lu, et al. Self-organizing RBF neural network using an adaptive gradient multiobjective particle swarm optimization[J]. IEEE Transactions on Cybernetics, 2019, 49(1): 69-82. doi: 10.1109/TCYB.2017.2764744
  • 加载中
图(4) / 表(2)
计量
  • 文章访问数:  17
  • HTML全文浏览量:  19
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-05-14
  • 修回日期:  2024-08-24
  • 录用日期:  2024-07-08
  • 网络出版日期:  2024-09-21

目录

    /

    返回文章
    返回