留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

南方先进光源C波段光阴极电子枪微波设计

刘盛进 姜世民 刘星光 肖永川 曹秀霞 吕永佳 李晓

刘盛进, 姜世民, 刘星光, 等. 南方先进光源C波段光阴极电子枪微波设计[J]. 强激光与粒子束, 2025, 37: 014005. doi: 10.11884/HPLPB202537.240195
引用本文: 刘盛进, 姜世民, 刘星光, 等. 南方先进光源C波段光阴极电子枪微波设计[J]. 强激光与粒子束, 2025, 37: 014005. doi: 10.11884/HPLPB202537.240195
Liu Shengjin, Jiang Shimin, Liu Xingguang, et al. RF design of C-band photocathode electron gun for Southern Advanced Photon Source[J]. High Power Laser and Particle Beams, 2025, 37: 014005. doi: 10.11884/HPLPB202537.240195
Citation: Liu Shengjin, Jiang Shimin, Liu Xingguang, et al. RF design of C-band photocathode electron gun for Southern Advanced Photon Source[J]. High Power Laser and Particle Beams, 2025, 37: 014005. doi: 10.11884/HPLPB202537.240195

南方先进光源C波段光阴极电子枪微波设计

doi: 10.11884/HPLPB202537.240195
基金项目: 国家自然科学基金面上项目(11875271);中国科学院高能物理研究所创新项目(E3545AU2)
详细信息
    作者简介:

    刘盛进,liusj@ihep.ac.cn

    通讯作者:

    刘星光,liuxg@ihep.ac.cn

  • 中图分类号: TL503.2

RF design of C-band photocathode electron gun for Southern Advanced Photon Source

  • 摘要: 作为南方先进光源直线段注入器重要设备,开展了C波段光阴极电子枪研究,包括驻波腔微波设计和耦合器设计。其中驻波腔采用3.6腔结构,π模加速模式,工作频率为5.712 GHz;耦合器采用同轴耦合方式。利用Superfish及CST完成了腔体微波结构设计,优化盘片的形状,降低腔体表面最大电场,从而有利于提高腔体加速场强;利用COMSOL开展了腔体水冷系统的分析,优化设计水路,减少腔体由于功率负载所造成的频率偏移, 控制腔体温度的上升,保持腔体最大温升小于20 ℃。在18.15 MW的入腔功率下,阴极面最高场强为180 MV/m,腔体表面最大场强与阴极面场强比值约为0.9346,腔体Q值大于10 000。通过对耦合器的设计,抑制二极模和四极模的传输,S11参数小于−40 dB。
  • 图  1  C波段电子枪测试平台及束流发射度的演化

    Figure  1.  Test platform of C-band electron gun and emittance evolution

    图  2  3.6腔驻波腔二维示意图

    Figure  2.  Profile of 3.6-cell cavity

    图  3  微波参数随束流孔径及椭圆短轴/长轴之比的变化

    Figure  3.  RF performance at beam tube and a/b rate

    图  4  3.6腔电子枪内部场的分布及中心轴上的电场分布

    Figure  4.  3.6-cell cavity electric field and on-axis field profile

    图  5  馈入功率与加速梯度(阴极面场强)的关系

    Figure  5.  Feed-in power vs electric field on cathode surface

    图  6  耦合器及传输中的多极模

    Figure  6.  Coupler and multi-pole modes

    图  7  5.712 GHz处的耦合器S11参数

    Figure  7.  S11 parameter at 5.712 GHz

    图  8  Pickup的设计角度及相应束流包络

    Figure  8.  Pickup angle and beam size

    图  9  加载功率腔体的发热情况及腔体结构的变化情况

    Figure  9.  Distribution of temperature and displacement in cavity

    表  1  电子枪仿真微波参数

    Table  1.   RF parameters of electron gun

    a/b a/mm b/mm mode separation/MHz Esurf/Ecath effective shunt impedance/(MΩ/m) Q value power/MW
    0.50 5.0 10.0 24.81 0.9470 48.685 11575.1 17.58
    0.55 5.5 10.0 21.837 0.9346 46.775 11252.3 18.15
    0.60 6.0 10.0 21.937 0.9353 44.467 10901.5 18.83
    0.70 6.0 8.57 17.829 0.9614 43.687 10691.0 19.00
    下载: 导出CSV

    表  2  腔体结构各尺寸敏感度分析

    Table  2.   Cavity dimension and sensitivity

    size/mm sensitivity/(MHz·mm−1)
    cavity diameter 45.053 140.800
    beam tube diameter 18.000 50.400
    single cell length 26.242 42.400
    semi short axis 5.500 14.100
    semi long axis 10.000 22.100
    下载: 导出CSV

    表  3  不同角度下XY方向束流的发射度

    Table  3.   X and Y direction beam emittance at different angle

    angle of pickup/(°) emittance of X direction/(mm·mrad) emittance of Y direction/(mm·mrad)
    no pickup 0.198 0.187
    0 0.210 0.228
    30 0.223 0.203
    60 0.207 0.199
    90 0.219 0.195
    下载: 导出CSV

    表  4  腔体入水温度的变化对腔体结构及微波参数的影响

    Table  4.   Water temperature and RF parameters

    Twater/℃ ΔTcavity/℃ ΔDcavity/μm Δf/MHz flatness of E-field/%
    25.0 14 7 −1.3 1
    22.5 12 6 −1.1 2
    20.0 10 5 −0.9 3
    下载: 导出CSV
  • [1] Arthur J, Anfinrud P, Audebert P, et al. LCLS-conceptual design report for the LCLS project[EB/OL]. 2002(2002-04-08). http://www-ssrl.slac.stanford.edu/lcls/cdr/.
    [2] Materlik G, Tschentscher T. TESLA technical design report Part 5: the X-ray free electron laser[EB/OL]. 2001. http://tesla.desy.de/newpages/TDRD/PartV/xfel.html.
    [3] Poole M W, Bennett S L, Bowler M A, et al. 4GLS: a new type of fourth generation light source facility[C]//Proceedings of 2003 Particle Accelerator Conference. 2003: 189-191.
    [4] Corlett J N, Barletta W A, DeSantis S, et al. A recirculating linac-based facility for ultrafast X-ray science[C]//Proceedings of 2003 Particle Accelerator Conference. 2003: 186-188.
    [5] Park S J, Park J H, Parc Y W, et al. Status of PPI (Pohang Photo-Injector) for PAL XFEL[C]//Proceedings of 2005 Particle Accelerator Conference. 2005: 1733-1735.
    [6] Kramer D. Closing in on the design of the BESSY-FEL[C]//Proceedings of 2003 Particle Accelerator Conference. 2003: 1083-1085.
    [7] 周奎, 李鹏, 周征, 等. 中物院太赫兹自由电子激光装置现状及升级计划[J]. 强激光与粒子束, 2022, 34:104013 doi: 10.11884/HPLPB202234.220091

    Zhou Kui, Li Peng, Zhou Zheng, et al. Status and upgrade plan of CAEP THz-FEL facility[J]. High Power Laser and Particle Beams, 2022, 34: 104013 doi: 10.11884/HPLPB202234.220091
    [8] 贾豪彦, 黄森林, 焦毅, 等. 超快X射线自由电子激光研究进展[J]. 强激光与粒子束, 2022, 34:054001 doi: 10.11884/HPLPB202234.220056

    Jia Haoyan, Huang Senlin, Jiao Yi, et al. Research advances in ultrafast X-ray free-electron lasers[J]. High Power Laser and Particle Beams, 2022, 34: 054001 doi: 10.11884/HPLPB202234.220056
    [9] Vogt M, Faatz B, Feldhaus J, et al. The free-electron laser FLASH at DESY[C]//Proceedings of IPAC2013. 2013: 1167-1169.
    [10] Altarelli M. The European X-ray free-electron laser: toward an ultra-bright, high repetition-rate X-ray source[J]. High Power Laser Science and Engineering, 2015, 3: e18. doi: 10.1017/hpl.2015.17
    [11] Emma P, Akre R, Arthur J, et al. First lasing and operation of an ångstrom-wavelength free-electron laser[J]. Nature Photonics, 2010, 4(9): 641-647. doi: 10.1038/nphoton.2010.176
    [12] Prat E, Abela R, Aiba M, et al. A compact and cost-effective hard X-ray free-electron laser driven by a high-brightness and low-energy electron beam[J]. Nature Photonics, 2020, 14(12): 748-754. doi: 10.1038/s41566-020-00712-8
    [13] Alesini D, Cardelli F, Castorina G, et al. Design of a full C-band injector for ultra-high brightness electron beam[C]//Proceedings of the 10th International Particle Accelerator Conference. 2019: 1979-1982.
    [14] Liu Xiaohan, Tang Chuanxiang, Qian Houjun, et al. Design of a compact C-band high brightness photoinjector for an ultra-fast electron diffraction[J]. Chinese Science Bulletin, 2013, 58(36): 4577-4581. doi: 10.1007/s11434-013-6079-5
    [15] Schaer M, Bettoni S, Citterio A, et al. Study of a C-band standing-wave gun for the SwissFEL injector[C]//Proceedings of the 5th International Particle Accelerator Conference. 2014: 698-700.
    [16] Chen Tingjue, Pei Yuanji, Song Yifan. Design and simulation of a C-band photocathode RF gun with a coaxial coupler for UEM[C]//Proceedings of the 8th International Particle Accelerator Conference. 2017: 525-527.
    [17] Wang Lin, Fang Wencheng, Tan Jianhao, et al. Design, fabrication and cold-test results of a 3.6 cell C-band photocathode RF gun for SXFEL[J]. Nuclear Instruments and Methods in Physics Research Section A, 2021, 1003: 165320. doi: 10.1016/j.nima.2021.165320
    [18] Liu Xingguang, Li Xiao, Jiang Shiming, et al. A C-band test platform for the development of RF photo cathode and high gradient accelerating structures[C]//Proceedings of the 14th International Particle Accelerator Conference. 2023: 1995-1998.
    [19] 姜世民, 陆志军, 刘星光, 等. C波段光阴极电子枪驱动激光整形研究[J]. 强激光与粒子束, 2024, 36:104003 doi: 10.11884/HPLPB202436.240162

    Jiang Shimin, Lu Zhijun, Liu Xingguang, et al. Study of drive laser shaping system for C-band photocathode RF gun[J]. High Power Laser and Particle Beams, 2024, 36: 104003 doi: 10.11884/HPLPB202436.240162
    [20] Poisson Superfish[EB/OL]. https://laacg.lanl.gov/laacg/services/.
    [21] CST Studio Suite. Computer Simulation Technology (CST)[EB/OL]. https://3ds.com.
    [22] COMSOL Multiphysics software[EB/OL]. https://Comsol.com.
    [23] 程诚, 程道喜, 郑曙昕, 等. 新型热阴极电子枪加热结构热分析[J]. 强激光与粒子束, 2010, 22(7):1607-1609 doi: 10.3788/HPLPB20102207.1607

    Cheng Cheng, Cheng Daoxi, Zheng Shuxin, et al. Thermal analysis of heating structure for thermionic cathode electron gun[J]. High Power Laser and Particle Beams, 2010, 22(7): 1607-1609 doi: 10.3788/HPLPB20102207.1607
    [24] Rao T, Dowell D H. An engineering guide to photoinjectors[EB/OL]. 2014(2014-03-28). https://doi.org/10.48550/arXiv.1403.7539.
  • 加载中
图(9) / 表(4)
计量
  • 文章访问数:  158
  • HTML全文浏览量:  52
  • PDF下载量:  39
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-11
  • 修回日期:  2024-11-29
  • 录用日期:  2024-11-29
  • 网络出版日期:  2024-12-14
  • 刊出日期:  2025-12-13

目录

    /

    返回文章
    返回