Water-cooling system development and its high precision water temperature control for Anhui University Free Electron Laser & High Magnetic Field device
-
摘要: 介绍了安徽大学正在建设的强光磁试验装置的整体布局,详细分析了装置的稳定运行对水冷系统的设计要求及难点,根据需求完成了整个装置的水冷系统设计研制,装置的水冷系统一共包含了两路独立的水冷机组系统,设计温度分别为(42±0.1)℃与(25±0.5)℃,并且可在一定范围内调节。装置水冷控制系统基于EPICS 框架开发,温度调节及控制功能通过PLC程序实现,PID参数配置通过PID调节器实现。控制系统的软件开发主要是在EPICS环境下实现对设备参数的设定和状态数据的回读,并将历史数据存入Archiver Appliances数据库中。试运行期间水冷控制系统的温度控制精度达到了(42±0.03)℃和(25±0.08)℃,符合设计要求,运行期间该系统稳定可靠,可以很好地保障装置安全稳定运行。Abstract: This paper introduces the overall layout of the Free Electron Laser & High Magnetic Field device under construction at Anhui University, and analyzes in detail the design requirements and difficulties in development of the water-cooling system for stable operation of the device, and presents the design of the water-cooling system for the whole device. The water-cooling system contains two independent water-cooling unit systems, with the design temperatures of (42±0.1)℃ and (25±0.5)℃ respectively, which can be adjusted within a certain range. The device water-cooling control system is developed based on EPICS (Experimental Physics and Industrial Control System) framework, the temperature regulation control function is realized by PLC (Programmable Logic Controller) program, and the PID (Proportion Integration Differentiation) parameter configuration is realized by PID regulator. The software development of the control system is mainly to realize the setting of the device parameters and the reading back of the status data under the EPICS environment, and to store the historical data into the Archiver Appliances database. The temperature control accuracy of the water-cooling control system during the trial operation reaches (42±0.03)℃ and (25±0.08)℃, which is in line with the design requirements, and the system is stable and reliable during the operation, which can well guarantee the safe and stable operation of the device.
-
Key words:
- Free Electron Laser & High Magnetic Field device /
- water-cooling system /
- control system /
- EPICS /
- PID
-
表 1 各厅流量分配
Table 1. Flow distribution by halls
position 42 ℃ water cooling capacity/kW 42 ℃ water flow/(t/h) 25 ℃ water cooling capacity/kW 25 ℃ water flow/(t/h) FEL hall 18 36 50 30 auxiliary hall 2 4 50 30 total 20 40 100 60 表 2 恒温水冷系统主管路设计计算
Table 2. Design and calculation of main pipelines for constant temperature water-cooling system
system
namewater temperature
and control
accuracy/℃dissipation
of heat/
kWwater volume
for given
branch/(m3/h)temperature
rise of given
water/℃designed
flow
rate/(m/s)designed
pipe
diameter/mmpipe
diameter
rounding/mmtube flow
rate/
(m/s)FEL hall 25±0.5 50 30 1.43 2 72.84 80 1.67 auxiliary hall 25±0.5 50 30 1.43 2 59.47 65 1.67 FEL hall 42±0.1 18 36 0.43 2 79.79 100 1.27 auxiliary hall 42±0.1 2 4 0.43 2 26.60 32 1.38 -
[1] Zhao Z T, Wang Dangliang, Chen Jianhui, et al. First lasing of an echo-enabled harmonic generation free-electron laser[J]. Nature Photonics, 2012, 6(6): 360-363. doi: 10.1038/nphoton.2012.105 [2] Allaria E, Castronovo D, Cinquegrana P, et al. Two-stage seeded soft-X-ray free-electron laser[J]. Nature Photonics, 2013, 7(11): 913-918. doi: 10.1038/nphoton.2013.277 [3] 秦伟伦. X射线自由电子激光的电子束操控方法研究[D]. 北京: 北京大学, 2018: 1-10Qin Weilun. Research on electron beam manipulation methods in X-ray free-electron lasers[D]. Beijing: Peking University, 2018: 1-10 [4] 赵晟. 连续波FEL的注入器束流动力学与束流调制研究[D]. 北京: 北京大学, 2022: 98-108Zhao Sheng. Research on the beam dynamics of photoinjector and beam modulation in continuous-wave FEL[D]. Beijing: Peking University, 2022: 98-108 [5] 曾凌. 高功率谐波型自种子自由电子激光的物理研究[D]. 北京: 北京大学, 2018: 1-10Zeng Ling. Study of high power self-seeded harmonic FEL[D]. Beijing: Peking University, 2018: 1-10 [6] Fang Z, Li J, Qian X X, et al. Design of a 42 T resistive magnet at the CHMFL[J]. IEEE Transactions on Applied Superconductivity, 2024, 34: 4300504. [7] 徐远方. 振荡器自由电子激光输出性能研究[D]. 合肥: 中国科学技术大学, 2020: 30-40Xu Yuanfang. The study of laser performance in oscillator free electron laser[D]. Hefei: University of Science and Technology of China, 2020: 30-40 [8] Zen Huishun, Suphakul S, Kii T, et al. Present status and perspectives of long wavelength free electron lasers at Kyoto University[J]. Physics Procedia, 2016, 84: 47-53. doi: 10.1016/j.phpro.2016.11.009 [9] Ortega J M, Rieul B, Berthet J P, et al. Electron beam adaptation measurement of an infrared FEL[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2013, 707: 69-72. [10] Li Heting, Jia Qika, Zhang Shancai, et al. Design of FELiChEM, the first infrared free-electron laser user facility in China[J]. Chinese Physics C, 2017, 41: 018102. doi: 10.1088/1674-1137/41/1/018102 [11] 刘金琨. 先进PID控制MATLAB仿真[M]. 北京: 电子工业出版社, 2016Liu Jinkun. Advanced PID control MATLAB simulation[M]. Beijing: Publishing House of Electronics Industry, 2016 [12] EPICS Introduction[EB/OL]. https://epics.anl.gov/index.php. [13] EPICS Users[EB/OL]. https://en.wikipedia.org/wiki/EPICS. [14] EPICS. IOC software components[EB/OL]. https://docs.epics-controls.org/en/latest/guides/EPICS_Intro.html. [15] SNS Controls CS-Studio[EB/OL]. https://controlssoftware.sns.ornl.gov/css_phoebus/. -