Design of a broadband absorptive electromagnetic pulse protection device
-
摘要: 在复杂电磁对抗环境中,对电子信息装备射频前端采取电磁防护措施以抵御强电磁干扰甚至损伤是必要的。针对现有防护器件在工作时反射超过阈值的强干扰信号,容易造成二次电磁威胁的问题,提出一种宽带吸波型电磁脉冲防护器件设计。通过在防护主路上引入微带线匹配枝节,实现电磁脉冲信号与输出端口隔离的同时,将其传输至匹配负载进行宽带吸收。在0.5 GHz至1.5 GHz(相对带宽>90%)内,实现了对低功率信号插入损耗小于1 dB,对电磁脉冲信号防护隔离度大于10 dB,同时输入端口回波损耗大于10 dB的良好性能。Abstract: In complex electromagnetic countermeasure environments, it is necessary to take electromagnetic protection measures for the radio frequency front-end of electronic information equipment to resist strong electromagnetic interference and even damage. In response to the problem that existing protective devices reflect strong interference signals exceeding the threshold during operation, which can easily cause secondary electromagnetic threats, we propose a design for a broadband absorptive electromagnetic pulse protection device. By introducing a microstrip line matching stub in the main protection path, the electromagnetic pulse signal is isolated from the output port and transmitted to the matching load for broadband absorption. Within the frequency range of 0.5 GHz to 1.5 GHz (relative bandwidth > 90%), the device achieves good performance with insertion loss less than 1 dB for low-power signals, electromagnetic pulse signal protection isolation greater than 10 dB, and input port return loss greater than 10 dB.
-
Key words:
- diode /
- absorptive protection /
- electromagnetic pulse /
- microstrip line /
- broadband matching stub
-
表 1 结构参数取值
Table 1. Values of structure parameters
(mm) w wm w1 w2 w3 w4 w5 w6 l l1 l2 l3 l4 l5 rb 40 3 5.75 11.25 6.5 1 1 2 80 38 14.25 29 49.25 3 2 表 2 本文设计与参考文献的相对带宽对比
Table 2. Comparison of relative bandwidth between the design of this paper and the references
relative bandwidth with insertion loss <1 dB &
isolation >10 dB & return loss >10 dBsize scenario Ref.[4] around 10% − free space Ref.[13] around 20% 1.25λ0$ \times $0.75λ0 circuit Ref.[14] around 30% 1.5λ0$ \times $0.75λ0 circuit Ref.[15] around 5% 0.25λ0$ \times $0.25λ0 circuit this paper around 90% 0.3λ0$ \times $0.25λ0 circuit -
[1] Eleftheriades G V. Electronics: protecting the weak from the strong[J]. Nature, 2014, 505(7484): 490-491. doi: 10.1038/nature12852 [2] Wu Zhaofeng, Xu Yanlin, Liu Peiguo, et al. An ultra-broadband energy selective surface design method: from filter circuits to metamaterials[J]. IEEE Transactions on Antennas and Propagation, 2023, 71(7): 5865-5873. doi: 10.1109/TAP.2023.3276447 [3] Tian Tao, Huang Xianjun, Xu Yanlin, et al. A wideband energy selective surface with quasi-elliptic bandpass response and high-power microwave shielding[J]. IEEE Transactions on Electromagnetic Compatibility, 2024, 66(1): 224-233. doi: 10.1109/TEMC.2023.3325438 [4] Zhou Lin, Shen Zhongxiang. 3-D absorptive energy-selective structures[J]. IEEE Transactions on Antennas and Propagation, 2021, 69(9): 5664-5672. doi: 10.1109/TAP.2021.3061097 [5] Zhang Jihong, Hu Ning, Wu Zhaofeng, et al. Adaptive high-impedance surface for prevention of waveguide’s high-intensity wave[J]. IEEE Transactions on Antennas and Propagation, 2021, 69(11): 7679-7687. doi: 10.1109/TAP.2021.3070052 [6] Huang Ruiqi, Liu Jibin, Liu Chenxi, et al. A broadband adaptive waveguide high-power microwave protector[J]. IEEE Microwave and Wireless Technology Letters, 2023, 33(1): 15-18. doi: 10.1109/LMWC.2022.3193457 [7] Huang Ruiqi, Liu Jibin, Liu Chenxi, et al. Self-switchable broadband waveguide protector against high power microwave[J]. IEEE Transactions on Electromagnetic Compatibility, 2023, 65(1): 355-359. doi: 10.1109/TEMC.2022.3201577 [8] Zha Song, Qu Zhuang, Zhang Jihong, et al. A gain-reconfigurable reflector antenna with surface-mounted field-induced artificial magnetic conductor for adaptive HIRF prevention[J]. IEEE Transactions on Antennas and Propagation, 2024, 72(9): 7252-7260. doi: 10.1109/TAP.2024.3434371 [9] Wang Meini, Tang Min, Zhang Haochi, et al. Energy selective antenna: concept, design, and experiment[J]. IEEE Transactions on Electromagnetic Compatibility, 2023, 65(2): 539-545. doi: 10.1109/TEMC.2023.3237689 [10] Zhao Rikang, Kang Xuanwu, Zheng Yingkui, et al. High-power GaN SBD limiter for sub-6G with fast response and recovery[J]. IEEE Microwave and Wireless Technology Letters, 2024, 34(1): 57-60. doi: 10.1109/LMWT.2023.3332680 [11] Gao Qian, Fordham M E, Cui Han, et al. A compact circuit model for frequency-selective limiters with strong field nonuniformity[J]. IEEE Transactions on Microwave Theory and Techniques, 2023, 71(12): 5124-5134. doi: 10.1109/TMTT.2023.3285449 [12] Yang Wei, Abu Khater M, Naglich E J, et al. Frequency-selective limiters using triple-mode filters[J]. IEEE Access, 2020, 8: 114854-114863. [13] Phudpong P, Hunter I C. Frequency-selective limiters using nonlinear bandstop filters[J]. IEEE Transactions on Microwave Theory and Techniques, 2009, 57(1): 157-164. doi: 10.1109/TMTT.2008.2009078 [14] Collado C, Hueltes A, Rocas E, et al. Absorptive limiter for frequency-selective circuits[J]. IEEE Microwave and Wireless Components Letters, 2014, 24(6): 415-417. doi: 10.1109/LMWC.2014.2313583 [15] Hueltes A, Rocas E, Collado C, et al. Three-port frequency-selective absorptive limiter[J]. IEEE Microwave and Wireless Components Letters, 2017, 27(5): 479-481. doi: 10.1109/LMWC.2017.2690858 -