留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种宽带吸波型电磁脉冲防护器件设计

黄瑞祺 刘继斌 郑黎明 楼水勇 李翔 刘培国

黄瑞祺, 刘继斌, 郑黎明, 等. 一种宽带吸波型电磁脉冲防护器件设计[J]. 强激光与粒子束, 2025, 37: 013005. doi: 10.11884/HPLPB202537.250006
引用本文: 黄瑞祺, 刘继斌, 郑黎明, 等. 一种宽带吸波型电磁脉冲防护器件设计[J]. 强激光与粒子束, 2025, 37: 013005. doi: 10.11884/HPLPB202537.250006
Huang Ruiqi, Liu Jibin, Zheng Liming, et al. Design of a broadband absorptive electromagnetic pulse protection device[J]. High Power Laser and Particle Beams, 2025, 37: 013005. doi: 10.11884/HPLPB202537.250006
Citation: Huang Ruiqi, Liu Jibin, Zheng Liming, et al. Design of a broadband absorptive electromagnetic pulse protection device[J]. High Power Laser and Particle Beams, 2025, 37: 013005. doi: 10.11884/HPLPB202537.250006

一种宽带吸波型电磁脉冲防护器件设计

doi: 10.11884/HPLPB202537.250006
基金项目: 国家自然科学基金项目(62293491)
详细信息
    作者简介:

    黄瑞祺,huangruiqi16@163.com

    通讯作者:

    刘培国,pg731@126.com

  • 中图分类号: TN82

Design of a broadband absorptive electromagnetic pulse protection device

  • 摘要: 在复杂电磁对抗环境中,对电子信息装备射频前端采取电磁防护措施以抵御强电磁干扰甚至损伤是必要的。针对现有防护器件在工作时反射超过阈值的强干扰信号,容易造成二次电磁威胁的问题,提出一种宽带吸波型电磁脉冲防护器件设计。通过在防护主路上引入微带线匹配枝节,实现电磁脉冲信号与输出端口隔离的同时,将其传输至匹配负载进行宽带吸收。在0.5 GHz至1.5 GHz(相对带宽>90%)内,实现了对低功率信号插入损耗小于1 dB,对电磁脉冲信号防护隔离度大于10 dB,同时输入端口回波损耗大于10 dB的良好性能。
  • 图  1  电磁脉冲防护器件组成结构

    Figure  1.  Configuration of the electromagnetic pulse protection device

    图  2  电磁脉冲防护器件作原理的分析

    Figure  2.  Analysis of working mechanism of the electromagnetic pulse protection device

    图  3  电磁脉冲防护器件仿真结果

    Figure  3.  Simulation results of the electromagnetic pulse protection device

    图  4  制造的样件和测试系统

    Figure  4.  The sample and test systems

    图  5  测试结果

    Figure  5.  Results of tests

    表  1  结构参数取值

    Table  1.   Values of structure parameters (mm)

    w wm w1 w2 w3 w4 w5 w6 l l1 l2 l3 l4 l5 rb
    40 3 5.75 11.25 6.5 1 1 2 80 38 14.25 29 49.25 3 2
    下载: 导出CSV

    表  2  本文设计与参考文献的相对带宽对比

    Table  2.   Comparison of relative bandwidth between the design of this paper and the references

    relative bandwidth with insertion loss <1 dB &
    isolation >10 dB & return loss >10 dB
    size scenario
    Ref.[4] around 10% free space
    Ref.[13] around 20% 1.25λ0$ \times $0.75λ0 circuit
    Ref.[14] around 30% 1.5λ0$ \times $0.75λ0 circuit
    Ref.[15] around 5% 0.25λ0$ \times $0.25λ0 circuit
    this paper around 90% 0.3λ0$ \times $0.25λ0 circuit
    下载: 导出CSV
  • [1] Eleftheriades G V. Electronics: protecting the weak from the strong[J]. Nature, 2014, 505(7484): 490-491. doi: 10.1038/nature12852
    [2] Wu Zhaofeng, Xu Yanlin, Liu Peiguo, et al. An ultra-broadband energy selective surface design method: from filter circuits to metamaterials[J]. IEEE Transactions on Antennas and Propagation, 2023, 71(7): 5865-5873. doi: 10.1109/TAP.2023.3276447
    [3] Tian Tao, Huang Xianjun, Xu Yanlin, et al. A wideband energy selective surface with quasi-elliptic bandpass response and high-power microwave shielding[J]. IEEE Transactions on Electromagnetic Compatibility, 2024, 66(1): 224-233. doi: 10.1109/TEMC.2023.3325438
    [4] Zhou Lin, Shen Zhongxiang. 3-D absorptive energy-selective structures[J]. IEEE Transactions on Antennas and Propagation, 2021, 69(9): 5664-5672. doi: 10.1109/TAP.2021.3061097
    [5] Zhang Jihong, Hu Ning, Wu Zhaofeng, et al. Adaptive high-impedance surface for prevention of waveguide’s high-intensity wave[J]. IEEE Transactions on Antennas and Propagation, 2021, 69(11): 7679-7687. doi: 10.1109/TAP.2021.3070052
    [6] Huang Ruiqi, Liu Jibin, Liu Chenxi, et al. A broadband adaptive waveguide high-power microwave protector[J]. IEEE Microwave and Wireless Technology Letters, 2023, 33(1): 15-18. doi: 10.1109/LMWC.2022.3193457
    [7] Huang Ruiqi, Liu Jibin, Liu Chenxi, et al. Self-switchable broadband waveguide protector against high power microwave[J]. IEEE Transactions on Electromagnetic Compatibility, 2023, 65(1): 355-359. doi: 10.1109/TEMC.2022.3201577
    [8] Zha Song, Qu Zhuang, Zhang Jihong, et al. A gain-reconfigurable reflector antenna with surface-mounted field-induced artificial magnetic conductor for adaptive HIRF prevention[J]. IEEE Transactions on Antennas and Propagation, 2024, 72(9): 7252-7260. doi: 10.1109/TAP.2024.3434371
    [9] Wang Meini, Tang Min, Zhang Haochi, et al. Energy selective antenna: concept, design, and experiment[J]. IEEE Transactions on Electromagnetic Compatibility, 2023, 65(2): 539-545. doi: 10.1109/TEMC.2023.3237689
    [10] Zhao Rikang, Kang Xuanwu, Zheng Yingkui, et al. High-power GaN SBD limiter for sub-6G with fast response and recovery[J]. IEEE Microwave and Wireless Technology Letters, 2024, 34(1): 57-60. doi: 10.1109/LMWT.2023.3332680
    [11] Gao Qian, Fordham M E, Cui Han, et al. A compact circuit model for frequency-selective limiters with strong field nonuniformity[J]. IEEE Transactions on Microwave Theory and Techniques, 2023, 71(12): 5124-5134. doi: 10.1109/TMTT.2023.3285449
    [12] Yang Wei, Abu Khater M, Naglich E J, et al. Frequency-selective limiters using triple-mode filters[J]. IEEE Access, 2020, 8: 114854-114863.
    [13] Phudpong P, Hunter I C. Frequency-selective limiters using nonlinear bandstop filters[J]. IEEE Transactions on Microwave Theory and Techniques, 2009, 57(1): 157-164. doi: 10.1109/TMTT.2008.2009078
    [14] Collado C, Hueltes A, Rocas E, et al. Absorptive limiter for frequency-selective circuits[J]. IEEE Microwave and Wireless Components Letters, 2014, 24(6): 415-417. doi: 10.1109/LMWC.2014.2313583
    [15] Hueltes A, Rocas E, Collado C, et al. Three-port frequency-selective absorptive limiter[J]. IEEE Microwave and Wireless Components Letters, 2017, 27(5): 479-481. doi: 10.1109/LMWC.2017.2690858
  • 加载中
图(5) / 表(2)
计量
  • 文章访问数:  128
  • HTML全文浏览量:  42
  • PDF下载量:  31
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-11-26
  • 修回日期:  2025-01-07
  • 录用日期:  2025-01-07
  • 网络出版日期:  2025-01-08
  • 刊出日期:  2025-12-13

目录

    /

    返回文章
    返回