留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

长计数器中子能谱与时间分布模拟研究

胡青元 彭星宇 张一镆 白晓厚 李波均 杨彪 章法强 彭太平

胡青元, 彭星宇, 张一镆, 等. 长计数器中子能谱与时间分布模拟研究[J]. 强激光与粒子束, 2025, 37: 124005. doi: 10.11884/HPLPB202537.250186
引用本文: 胡青元, 彭星宇, 张一镆, 等. 长计数器中子能谱与时间分布模拟研究[J]. 强激光与粒子束, 2025, 37: 124005. doi: 10.11884/HPLPB202537.250186
Hu Qingyuan, Peng Xingyu, Zhang Yimo, et al. Simulation of neutron spectrum and time distribution for long counters[J]. High Power Laser and Particle Beams, 2025, 37: 124005. doi: 10.11884/HPLPB202537.250186
Citation: Hu Qingyuan, Peng Xingyu, Zhang Yimo, et al. Simulation of neutron spectrum and time distribution for long counters[J]. High Power Laser and Particle Beams, 2025, 37: 124005. doi: 10.11884/HPLPB202537.250186

长计数器中子能谱与时间分布模拟研究

doi: 10.11884/HPLPB202537.250186
基金项目: 国家自然科学基金项目(12105263、12305206、11805174);中子科学与技术全国重点实验室基金项目(NST20240205)
详细信息
    作者简介:

    胡青元,huqyuan@163.com

    通讯作者:

    彭星宇,pxy407@126.com

  • 中图分类号: TL816

Simulation of neutron spectrum and time distribution for long counters

  • 摘要: 针对长计数器基本结构,建立简化模型系统模拟了快中子脉冲经慢化体后进入正比管的能谱分布与时间分布,结果表明:中子能谱随时间的演化明显,31 μs以后,中子的能谱变化变小,趋于恒定;进入正比管的不同能量的中子时间分布不同,随着能量变低,时间分布变宽,热中子附近,时间分布可持续至上千μs;利用不同能量中子随时间的分布,计算了长计数器计数随时间的变化。慢化体半径超过20 cm后,进入正比管的中子通量与能谱基本不随慢化体半径变化而变化,此结果可为长计数器尺寸的优化设计提供参考。
  • 图  1  简单模拟模型示意图

    Figure  1.  Sketch of the simple simulation model

    图  2  穿过不同厚度慢化体后的中子能谱

    Figure  2.  Neutron spectrum passed through the moderator with different thickness

    图  3  长计数器简化结构

    Figure  3.  Sketch of the simplified long counter

    图  4  不同慢化体半径下的中子能谱

    Figure  4.  Neutron spectrum under different moderator radius

    图  5  不同前端慢化体厚度下的中子能谱

    Figure  5.  Neutron spectrum under different front modulator thickness

    图  6  中子能谱随时间的演化

    Figure  6.  Time evolution of neutron spectrum

    图  7  不同能量中子的时间分布

    Figure  7.  Time distribution of neutrons with different energy

    图  8  两种初始入射脉冲宽度下2.45×10−8~8.09×10−8 MeV能段的时间分布比较

    Figure  8.  Compare of the time distribution for energy bin of 2.45×10−8 to 8.09×10−8 MeV between the two initial incident width

    图  9  对数坐标下不同能量中子的时间分布

    Figure  9.  Time distribution of neutrons with different energy under logarithmic coordinates

    图  10  探测计数的时间分布

    Figure  10.  Time distribution of detection counts

  • [1] Hanson A O, Mckibben J L. A neutron detector having uniform sensitivity from 10 KeV to 3 MeV[J]. Physical Review, 1947, 72(8): 673-677.
    [2] Nobles R A, Day R B, Henkel R L, et al. Response of the long counter[J]. Review of Scientific Instruments, 1954, 25(4): 334-335.
    [3] East L V, Walton R B. Polyethylene moderated 3He neutron detectors[J]. Nuclear Instruments and Methods, 1969, 72(2): 161-166. doi: 10.1016/0029-554X(69)90152-9
    [4] Slaughter D R, Rueppel D W. Calibration of a depangher long counter from 2 keV to 19 MeV[J]. Nuclear Instruments and Methods, 1977, 145(2): 315-320. doi: 10.1016/0029-554X(77)90427-X
    [5] Hu Q Y, Li B J, Zhang D, et al. Optimizing the design of a moderator-based neutron detector for a flat response curve in the 2-14MeV energy range[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2009, 609(2/3): 213-216.
    [6] Lacoste V, Gressier V. Experimental characterization of the IRSN long counter for the determination of the neutron fluence reference values at the AMANDE facility[J]. Radiation Measurements, 2010, 45(10): 1254-1257. doi: 10.1016/j.radmeas.2010.07.004
    [7] Lacoste V. Design of a new long counter for the determination of the neutron fluence reference values at the IRSN AMANDE facility[J]. Radiation Measurements, 2010, 45(10): 1250-1253. doi: 10.1016/j.radmeas.2010.06.026
    [8] Roberts N J, Thomas D J, Lacoste V, et al. Comparison of long counter measurements of monoenergetic and radionuclide source-based neutron fluence[J]. Radiation Measurements, 2010, 45(10): 1151-1153.
    [9] Pereira J, Hosmer P, Lorusso G, et al. The neutron long counter NERO for studies of β-delayed neutron emission in the r-process[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2010, 618(1/3): 275-283.
    [10] Lawrence D J, Goldsten J O, Peplowski P N, et al. The psyche Gamma-Ray and neutron spectrometer[J]. Space Science Reviews, 2025, 221: 78. doi: 10.1007/s11214-025-01201-6
    [11] Leconte P, Belverge D, Bernard D, et al. Accurate measurements of delayed neutron data for reactor applications: methodology and application to 235U(nth, f)[J]. The European Physical Journal A, 2024, 60: 197. doi: 10.1140/epja/s10050-024-01402-7
    [12] Hu Q Y, Zhang J H, Zhang D, et al. An improved long counter for neutron fluence measurement with a flat response over a wide energy range from 1 keV to 15 MeV[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2014, 768: 43-45.
    [13] Wang Guanbo, Qian Dazhi, Li Junjie, et al. Experimental and theoretical study of long counters on the departure of “point” assumption and scattering background influence[J]. Radiation Measurements, 2015, 82: 146-153. doi: 10.1016/j.radmeas.2015.07.007
    [14] Park R J, Byun S H. Optimization of a neutron long counter design by Monte Carlo simulation[J]. Health Physics, 2019, 117(3): 300-305.
    [15] Tagziria H, Thomas D J. Calibration and Monte Carlo modelling of neutron Long Counters[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2000, 452(3): 470-483.
    [16] Li Yannan, Li Taosheng, Wang Ying, et al. Determination method of high Fluence rate for D-T neutron source with long counter[J]. Radiation Measurements, 2021, 148: 106662. doi: 10.1016/j.radmeas.2021.106662
    [17] Smolyar V P, Tarasov V A, Mileva A O, et al. Geant4 simulation of the moderating neutrons spectrum[J]. Radiation Physics and Chemistry, 2023, 212: 111151.
    [18] Marshall T O. Attenuation of 14 MeV neutrons in water[J]. Health Physics, 1970, 19: 571-574.
    [19] Deiev O S. GEANT 4 simulation of neutron transport and scattering in media[J]. Problems of Atomic Science and Technology, 2013, 85: 236-241.
    [20] Lisovska V, Malykhina T, Shpagina V, et al. GEANT4 modeling of energy spectrum of fast neutrons source for the development of research technique of heavy scintillators[J]. East European Journal of Physics, 2019(2): 58-63.
    [21] Shin J W, Hong S W, Bak S I, et al. GEANT4 and PHITS simulations of the shielding of neutrons from the 252Cf source[J]. Journal of the Korean Physical Society, 2014, 65(5): 591-598.
    [22] Robinson A E. New libraries for simulating neutron scattering in dark matter detector calibrations[J]. Physical Review C, 2014, 89: 032801.
    [23] Lemrani R, Robinson M, Kudryavtsev V A, et al. Low-energy neutron propagation in MCNPX and GEANT4[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2006, 560(2): 454-459. doi: 10.1016/j.nima.2005.12.238
    [24] Ali F, Surette J, Atanackovic J, et al. Calculation of response parameters for a neutron long counter instrument[J]. Applied Radiation and Isotopes, 2024, 214: 111502. doi: 10.1016/j.apradiso.2024.111502
  • 加载中
图(10)
计量
  • 文章访问数:  49
  • HTML全文浏览量:  18
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-06-25
  • 修回日期:  2025-10-13
  • 录用日期:  2025-10-15
  • 网络出版日期:  2025-11-07
  • 刊出日期:  2025-11-06

目录

    /

    返回文章
    返回