留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

强流直线加速器中子源氘气靶设计与分析

关清帝 解峰 梁建峰 王春杰 杨凤虎 李雪松 徐江

关清帝, 解峰, 梁建峰, 等. 强流直线加速器中子源氘气靶设计与分析[J]. 强激光与粒子束. doi: 10.11884/HPLPB202638.250067
引用本文: 关清帝, 解峰, 梁建峰, 等. 强流直线加速器中子源氘气靶设计与分析[J]. 强激光与粒子束. doi: 10.11884/HPLPB202638.250067
Guan Qingdi, Xie Feng, Liang Jianfeng, et al. Design and analysis of D2 gas target for high-current linear accelerator neutron source[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202638.250067
Citation: Guan Qingdi, Xie Feng, Liang Jianfeng, et al. Design and analysis of D2 gas target for high-current linear accelerator neutron source[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202638.250067

强流直线加速器中子源氘气靶设计与分析

doi: 10.11884/HPLPB202638.250067
详细信息
    作者简介:

    关清帝,guanqingdi@nint.ac.cn

    通讯作者:

    解 峰,xiefeng@nint.ac.cn

  • 中图分类号: TL8

Design and analysis of D2 gas target for high-current linear accelerator neutron source

  • 摘要: 中子转换靶是强流直线加速器中子源的重要组成部分,在强流粒子束(质子或氘离子等)的轰击下,中子转换靶的散热是当前制约中子产额提升的关键因素,具有强散热能力的高性能气体靶是其中的解决方案之一。针对传统气体靶散热能力不足的问题,通过对靶室结构的改进,设计了一种新型动态气体靶系统。开展了气体靶系统和靶室结构的概念设计,并利用Target软件计算了气体靶金属窗和气体体靶对入射离子的能量歧离效应,结果显示:因气体造成的能量歧离很小,金属窗是入射离子能量歧离的主要来源。通过耦合SRIM计算加热功率,实现了热源随气体密度的动态加载,模拟了不同流强和不同入口速度条件下靶室内气流流动规律,结果表明,随着流强增加,加热功率逐渐升高,加热区密度迅速下降,同时提高靶室入口速度能够增强散热能力,减小因束流加热引起的密度下降效应。最后对气体靶产生中子的整体性能进行了评估,计算了不同流强下的中子产额及其能谱分布,当流强为10 mA时,气体靶的中子产额可以达到5.2×1012 n/s。
  • 图  1  动态气体靶系统组成示意图

    Figure  1.  Schematic of dynamic gas target system

    图  2  动态气体靶热力循环布局示意图

    Figure  2.  Dynamic gas target thermodynamic cycle layout diagram

    图  3  气体靶系统结构布局图

    Figure  3.  Gas target system layout

    图  4  气体靶靶室结构示意图

    Figure  4.  Structure diagram of gas target chamber

    图  5  入射离子能量歧离$ {E}_{\mathrm{s}\mathrm{t}\mathrm{r}} $随钼窗厚度的变化

    Figure  5.  The variation of energy straggling with the window thickness

    图  6  钼窗中能量歧离随入射离子能量E的变化

    Figure  6.  The variation of energy straggling with the incident ion energy

    图  7  氘气中入射离子能量歧离$ {E}_{\mathrm{s}\mathrm{t}\mathrm{r}} $的概率密度

    Figure  7.  The PDF of energy straggling of incident ions in deuterium gas

    图  8  氘气中能量歧离随入射离子能量E的变化

    Figure  8.  The variation curve of energy straggling with incident ion energy

    图  9  气体靶腔室结构示意图

    Figure  9.  Schematic diagram of gas target chamber

    图  10  CFD耦合SRIM计算流程图

    Figure  10.  Computational flowchart of CFD with SRIM

    图  11  靶室中速度、压力、温度和密度分布

    Figure  11.  The distribution of velocity, pressure, temperature and density in the target chamber

    图  12  靶室中心流线上温度和密度分布

    Figure  12.  Temperature and density distribution on the central streamline of the target chamber

    图  13  靶室速度云图

    Figure  13.  Target chamber velocity contour map

    图  14  靶室中心x=0 m位置处温度和密度剖面

    Figure  14.  Temperature and density profiles at x = 0 m in the center of the target chamber

    图  15  靶室中心加热功率和平均密度随束流流强的变化

    Figure  15.  Variation of heat power and mean density of target chamber center with beam current intensity

    图  16  气体靶中子辐射场计算构型

    Figure  16.  Computational configuration of neutron radiation field of the gas target

    图  17  不同入射离子能量下的中子通量

    Figure  17.  Neutron fluence under different incident ion energies

    图  18  不同束流流强下的中子产额

    Figure  18.  Neutron yield under different beam current intensities

    表  1  靶室入口流动参数设置

    Table  1.   Inlet flow parameter settings of the target chamber

    No. velocity density pressure temperature current
    case1 10 m/s 0.982 kg/m3 202650 Pa 100 K 10 mA
    case2 20 m/s 0.982 kg/m3 202650 Pa 100 K 10 mA
    case3 20 m/s 0.982 kg/m3 202650 Pa 100 K 1-10 mA
    下载: 导出CSV

    表  2  出射中子能量及其半高宽

    Table  2.   Emitted neutron energy and its FWHM

    incident
    deuteron
    beam
    energy/MeV
    outgoing
    primary
    neutron
    energy/MeV
    FWHM
    of the
    neutron
    energy/MeV
    energy
    spread of
    the outgoing
    neutron
    10 12.7 0.158 1.24%
    11 13.67 0.152 1.11%
    12 14.63 0.139 0.95%
    13 15.59 0.134 0.86%
    14 16.55 0.125 0.76%
    15 17.51 0.121 0.69%
    下载: 导出CSV
  • [1] 阮锡超. 中子核数据测量进展及展望[J]. 中国科学: 物理学 力学 天文学, 2020, 50: 052002

    Ruan Xichao. Progress and prospect of neutron nuclear data measurement[J]. Scientia Sinica Physica, Mechanica & Astronomica, 2020, 50: 052002
    [2] 唐靖宇, 敬罕涛, 夏海鸿, 等. 先进裂变核能的关键核数据测量和CSNS白光中子源[J]. 原子能科学技术, 2013, 47(7): 1089-1095 doi: 10.7538/yzk.2013.47.07.1089

    Tang Jingyu, Jing Hantao, Xia Haihong, et al. Key nuclear data measurements for advanced fission energy and white neutron source at CSNS[J]. Atomic Energy Science and Technology, 2013, 47(7): 1089-1095 doi: 10.7538/yzk.2013.47.07.1089
    [3] 于旭东, 马鹏飞, 王百川, 等. 西安200 MeV质子应用装置射频四极加速器的设计与测试[J]. 现代应用物理, 2021, 12: 040403 doi: 10.12061/j.issn.2095-6223.2021.040403

    Yu Xudong, Ma Pengfei, Wang Baichuan, et al. Design and test of radio frequency quadrupole accelerator for Xi'an 200 MeV proton application facility[J]. Modern Applied Physics, 2021, 12: 040403 doi: 10.12061/j.issn.2095-6223.2021.040403
    [4] Voronin G, Kovalchuk V, Svinin M, et al. Development of the intense neutron generator SNEG-13[J]. Proceedings of the EPAC94, 1994, 27: 2678-2680.
    [5] Nishimura A, Hishinuma Y, Tanaka T, et al. Design, fabrication and installation of cryogenic target system for 14 MeV neutron irradiation on superconducting magnet materials[J]. Fusion Engineering and Design, 2005, 75/79: 173-177.
    [6] Kutsukake C, Seki M, Tanaka S, et al. Tritium distribution measurement of FNS tritium targets by imaging plate[J]. Fusion Science and Technology, 2002, 41(3P2): 555-559. doi: 10.13182/FST02-A22650
    [7] 姚泽恩, 王俊润, 张宇, 等. 兰州大学的中子发生器研制及应用展望[J]. 原子能科学技术, 2022, 56(9): 1840-1852 doi: 10.7538/yzk.2022.youxian.0445

    Yao Ze’en, Wang Junrun, Zhang Yu, et al. Development and application of neutron generator at Lanzhou University[J]. Atomic Energy Science and Technology, 2022, 56(9): 1840-1852 doi: 10.7538/yzk.2022.youxian.0445
    [8] 王刚, 于前锋, 王文, 等. 氘氚聚变中子发生器旋转氚靶传热特性研究[J]. 物理学报, 2015, 64: 102901 doi: 10.7498/aps.64.102901

    Wang Gang, Yu Qianfeng, Wang Wen, et al. Heat transfer analysis of rotating tritium target of deuterium-tritium fusion neutron generator[J]. Acta Physica Sinica, 2015, 64: 102901 doi: 10.7498/aps.64.102901
    [9] Wang Wen, Zhang Qingkun, Wang Yongfeng, et al. Design and experimental validation of differential pumped vacuum system for HINEG windowless gas target[J]. Fusion Engineering and Design, 2023, 189: 113465. doi: 10.1016/j.fusengdes.2023.113465
    [10] 中国原子能科学研究院. 一种用于医用同位素生产气体靶的冷却机构和方法: 114585145A[P]. 2022-06-03

    China Institute of Atomic Energy. Cooling mechanism and method for medical isotope production gas target: 114585145A[P]. 2022-06-03
    [11] Tiedemann D, Stiebing K E, Winters D F A, et al. A pulsed supersonic gas jet target for precision spectroscopy at the HITRAP facility at GSI[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2014, 764: 387-393. doi: 10.1016/j.nima.2014.08.017
    [12] Souliotis G A, Rodrigues M R D, Wang K, et al. A novel approach to medical radioisotope production using inverse kinematics: a successful production test of the theranostic radionuclide 67Cu[J]. Applied Radiation and Isotopes, 2019, 149: 89-95. doi: 10.1016/j.apradiso.2019.04.019
    [13] 祁步嘉, 周祖英, 周陈维, 等. HI-13串列加速器上的氚气体靶装置[J]. 原子能科学技术, 1997, 31(5): 385-389

    Qi Bujia, Zhou Zuying, Zhou Chenwei, et al. A tritium gas target for neutron production at HI-13 tandem accelerator[J]. Atomic Energy Science and Technology, 1997, 31(5): 385-389
    [14] Guzek J, Richardson K, Franklyn C B, et al. Development of high pressure deuterium gas targets for the generation of intense mono-energetic fast neutron beams[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 1999, 152(4): 515-526.
    [15] Ziegler J F, Ziegler M D, Biersack J P. SRIM: the stopping and range of ions in matter (2010)[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2010, 268(11/12): 1818-1823.
  • 加载中
图(18) / 表(2)
计量
  • 文章访问数:  18
  • HTML全文浏览量:  13
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-04-07
  • 修回日期:  2025-10-16
  • 录用日期:  2025-08-26
  • 网络出版日期:  2025-11-29

目录

    /

    返回文章
    返回