留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

百瓦级飞秒棒状光子晶体光纤激光器

谭欣 赵变丽 徐智阳 张睿 周又阳 刘琦 南颖刚 李绍攀 杨皓 李逵 张晓世

谭欣, 赵变丽, 徐智阳, 等. 百瓦级飞秒棒状光子晶体光纤激光器[J]. 强激光与粒子束. doi: 10.11884/HPLPB202638.250252
引用本文: 谭欣, 赵变丽, 徐智阳, 等. 百瓦级飞秒棒状光子晶体光纤激光器[J]. 强激光与粒子束. doi: 10.11884/HPLPB202638.250252
Tan Xin, Zhao Bianli, Xu Zhiyang, et al. Hundred-watt-level high-power femtosecond fiber laser[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202638.250252
Citation: Tan Xin, Zhao Bianli, Xu Zhiyang, et al. Hundred-watt-level high-power femtosecond fiber laser[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202638.250252

百瓦级飞秒棒状光子晶体光纤激光器

doi: 10.11884/HPLPB202638.250252
基金项目: 云南省高校服务重点产业科技项目(FWCY-ZD2024002);青年科学基金项目(62505269)
详细信息
    作者简介:

    谭 欣,tanxin@stu.ynu.edu.cn

    通讯作者:

    李 逵,kuili15@ynu.edu.cn

    张晓世,zhangxiaoshi@itc.ynu.edu.cn

Hundred-watt-level high-power femtosecond fiber laser

  • 摘要: 基于啁啾脉冲放大技术,采用棒状光子晶体光纤作为核心增益介质,成功搭建一套百瓦级的高功率飞秒光纤激光系统。在主放大器部分,通过反向泵浦与单棒双通结合的放大形式,实现泵浦功率-放大后信号光功率的转换效率超过60%,实现了高的转换效率。放大过程中有效避免了横向模式不稳定和非线性光谱畸变,输出光斑椭圆度为95%。采用双光栅结构对输出激光进行脉宽压缩,最终实现了中心波长1033 nm、重复频率1 MHz、单脉冲能量162 μJ、脉冲宽度233 fs的高功率激光输出,激光器系统的总泵浦光功率与压缩后信号光功率转换效率高达54%。该激光器的高重复频率、高平均功率和窄脉宽特性,为百瓦级高功率飞秒光纤激光器的设计提供了新的方案。
  • 图  1  基于棒状光纤的CPA 系统示意图

    Figure  1.  Schematic setup of the CPA system based on a rod-type fiber

    图  2  Aero GAIN-ROD 3.1 棒状光子晶体光纤实物图

    Figure  2.  Physical photograph of Aero GAIN-ROD 3.1 rod-type photonic crystal fiber

    图  3  激光器双通放大输出光谱

    Figure  3.  Measured spectrum after double-pass amplification

    图  4  不同泵浦功率下对应的双通放大输出功率

    Figure  4.  Measured double-pass amplified output power at different pump powers

    图  6  压缩后脉冲在功率162 W时的自相关曲线

    Figure  6.  Measured autocorrelation traces of compressed pulses at maximum output power of 162 W

    图  7  压缩后的脉冲在输出功率162 W时的光斑

    Figure  7.  The beam spot of the compressed pulse at an output power of 162 W

    图  8  激光器在162 W输出功率下的8小时功率稳定性测试

    Figure  8.  Eight-hour output power stability measured at 162 W

    图  5  不同泵浦功率下对应的压缩后输出功率

    Figure  5.  Measured compressed output power at different pump power

  • [1] 伍圆军, 高妍琦, 华怡林, 等. 大能量全固态再生放大器研究进展[J]. 强激光与粒子束, 2020, 32: 112006 doi: 10.11884/HPLPB202032.200089

    Wu Yuanjun, Gao Yanqi, Hua Yilin, et al. Progress in high energy all-solid-state regenerative amplifier[J]. High Power Laser and Particle Beams, 2020, 32: 112006 doi: 10.11884/HPLPB202032.200089
    [2] Müller M, Aleshire C, Klenke A, et al. 10.4 kW coherently combined ultrafast fiber laser[J]. Optics Letters, 2020, 45(11): 3083-3086. doi: 10.1364/OL.392843
    [3] Stark H, Buldt J, Müller M, et al. 1 kW, 10 mJ, 120 fs coherently combined fiber CPA laser system[J]. Optics Letters, 2021, 46(5): 969-972. doi: 10.1364/OL.417032
    [4] Pedersen M E V, Johansen M M, Olesen A S, et al. 175 W average power from a single-core rod fiber-based chirped-pulse-amplification system[J]. Optics Letters, 2022, 47(19): 5172-5175. doi: 10.1364/OL.471631
    [5] 王志浩, 彭双喜, 徐浩, 等. 724 W, 0.9 mJ, 227 fs四通道相干合成超快光纤激光系统(特邀)[J]. 光学学报, 2024, 44: 1732017 doi: 10.3788/AOS241138

    Wang Zhihao, Peng Shuangxi, Xu Hao, et al. 724 W, 0.9 mJ, 227 fs four-channel coherently combined ultrafast fiber laser system (invited)[J]. Acta Optica Sinica, 2024, 44: 1732017 doi: 10.3788/AOS241138
    [6] Klenke A, Breitkopf S, Kienel M, et al. 530 W, 1.3 mJ, four-channel coherently combined femtosecond fiber chirped-pulse amplification system[J]. Optics Letters, 2013, 38(13): 2283-2285. doi: 10.1364/OL.38.002283
    [7] Shi Zhuo, Wang Jingshang, Zhang Yao, et al. Generation of 107 W, 1.07 mJ femtosecond pulses from chirped- and divided-pulse Sagnac Yb-fiber amplifiers by suppression of static mode degradation[J]. Journal of the Optical Society of America B, 2023, 40(9): 2429-2433. doi: 10.1364/JOSAB.499313
    [8] 张炳涛, 陈月娥, 赵兹罡, 等. 光子晶体光纤的发展和应用[J]. 应用物理, 2019, 9(1): 30-50 doi: 10.12677/APP.2019.91005

    Zhang Bingtao, Chen Yue'e, Zhao Zigang, et al. Development and applications of photonic crystal fibers[J]. Applied Physics, 2019, 9(1): 30-50 doi: 10.12677/APP.2019.91005
    [9] 王栋梁, 史卓, 王井上, 等. 1MHz, 273W掺镱棒状光纤啁啾脉冲放大系统[J]. 物理学报, 2024, 73: 134204 doi: 10.7498/aps.73.20240300

    Wang Dongliang, Shi Zhuo, Wang Jingshang, et al. 1 MHz, 273 W average power Ytterbium-doped rod-type fiber chirped pulse amplification system[J]. Acta Physica Sinica, 2024, 73: 134204 doi: 10.7498/aps.73.20240300
    [10] Liu Danni, Mao Xiaojie, Bi Guojiang, et al. Efficiency enhancing technique for rod fiber picosecond amplifiers with optimal mode field matching[J]. Micromachines, 2023, 14: 450. doi: 10.3390/mi14020450
    [11] 胡明列, 宋有建, 刘博文, 等. 光子晶体光纤飞秒激光技术研究进展及其前沿应用[J]. 中国激光, 2009, 36(7): 1660-1670 doi: 10.3788/CJL20093607.1660

    Hu Minglie, Song Youjian, Liu Bowen, et al. Development and advanced applications of femtosecond photonic crystal fiber laser technique[J]. Chinese Journal of Lasers, 2009, 36(7): 1660-1670 doi: 10.3788/CJL20093607.1660
    [12] Lin W, Li Z, Teng Y, et al. Flexible delivery of broadband, 100 fs mid-infrared pulses in the water-absorption band using hollow-core photonic crystal fiber[J]. Optica, 2025, 12(6): 901-906. doi: 10.1364/OPTICA.558579
    [13] 胡丽丽, 冯素雅, 王孟, 等. 掺镱大模场光子晶体光纤研究进展(特邀)[J]. 中国激光, 2024, 51: 0106001 doi: 10.3788/CJL231257

    Hu Lili, Feng Suya, Wang Meng, et al. Research progress on Yb-doped large mode field photonic crystal fibers (invited)[J]. Chinese Journal of Lasers, 2024, 51: 0106001 doi: 10.3788/CJL231257
    [14] Johansen M M, Laurila M, Maack M D, et al. Frequency resolved transverse mode instability in rod fiber amplifiers[J]. Optics Express, 2013, 21(19): 21847-21856. doi: 10.1364/OE.21.021847
    [15] Christensen S L, Johansen M M, Michieletto M, et al. Experimental investigations of seeding mechanisms of TMI in rod fiber amplifier using spatially and temporally resolved imaging[J]. Optics Express, 2020, 28(18): 26690-26705. doi: 10.1364/OE.400520
    [16] Lægsgaard J. Static thermo-optic instability in double-pass fiber amplifiers[J]. Optics Express, 2016, 24(12): 13429-13443. doi: 10.1364/OE.24.013429
    [17] Lupi J F, Johansen M M, Michieletto M, et al. Static and dynamic mode coupling in a double-pass rod-type fiber amplifier[J]. Optics Letters, 2018, 43(22): 5535-5538. doi: 10.1364/OL.43.005535
    [18] Lupi J F, Johansen M M, Michieletto M, et al. High gain in a dual-pass rod-type fiber amplifier[J]. Journal of the Optical Society of America B, 2020, 37(2): 451-458. doi: 10.1364/JOSAB.381433
    [19] Zhao Qikai, Gao Guanguang, Cong Zhenhua, et al. High-repetition-rate, 50-µJ-level, 1064-nm, CPA laser system based on a single-stage double-pass Yb-doped rod-type fiber amplifier[J]. Optics Express, 2022, 30(3): 3611-3619. doi: 10.1364/OE.449112
    [20] Zhang Yao, Wang Jingshang, Teng Hao, et al. Double-pass pre-chirp managed amplification with high gain and high average power[J]. Optics Letters, 2021, 46(13): 3115-3118. doi: 10.1364/OL.428066
  • 加载中
图(8)
计量
  • 文章访问数:  19
  • HTML全文浏览量:  12
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-08-05
  • 修回日期:  2025-11-22
  • 录用日期:  2025-11-10
  • 网络出版日期:  2025-11-29

目录

    /

    返回文章
    返回