Rapid prediction and verification of radar cross section for weak-scattering slots in aircraft skin design
-
摘要: 在隐身飞行器设计中,缝隙等弱散射源的影响日益凸显。当前研究虽广泛采用仿真与测试分析缝隙散射,但其模型通常不属于真实的弱散射源。为准确度量弱缝隙的雷达散射截面(RCS)性能,本文应用电场矢量叠加原理,采用对消技术将缝隙的散射效应从其低散射背景载体中分离出来。基于此方法,我们明确了缝隙尺寸与其RCS之间的变化关系。同时,本文所采用的多目标散射源累积快速预测方法,能够对单直缝、直缝阵列及弯折缝等目标的散射性能进行快速评估。经对比验证,该快速方法的结果与精确模型仿真具有一致性。此方法为飞机表面蒙皮搭接、设备开口等结构的设计与优化提供了有效工具。文末通过试验件的仿真与实测数据对比,证实了本方法在评估弱散射目标方面的有效性。Abstract:
Background Slots are critical weak scattering sources in stealth aircraft design, significantly influencing Radar Cross Section (RCS). Existing simulation and measurement models often fail to capture true weak scattering behavior, as it is difficult to isolate slot scattering from the low-RCS background.Purpose This study aims to accurately quantify the RCS contribution of weak slots by separating their scattering effect from the background structure, establish relationships between slot dimensions and RCS, and develop a fast estimation method for various slot configurations.Methods Using the electric field vector superposition principle, a cancellation technique was applied to extract slot scattering from the background. A fast multi-target scatterer accumulation method was developed to predict scattering from single straight slots, arrays, and bent slots. Simulations and experiments were conducted for validation.Results The cancellation technique effectively isolated slot scattering, revealing clear RCS-dimension correlations. The fast estimation method agreed well with detailed simulations and experimental measurements across different slot types.Conclusions The proposed approach offers an effective tool for designing and optimizing aircraft structures such as skin joints and apertures. It enables efficient RCS evaluation of weak scattering sources, enhancing stealth performance assessment capability. -
表 1 不同长度的缝隙RCS对比
Table 1. RCS comparison of slots with different lengths
slot length/mm mean RCS of
slot (±30°)/dBsmpeak RCS of
slot (0°)/dBsm20 −70.72 −68.74 30 −68.59 −64.96 40 −67.35 −62.67 60 −65.58 −59.17 80 −64.20 −56.55 120 −62.43 −53.06 表 2 不同长度的缝隙RCS对比
Table 2. RCS comparison of slots with different lengths
slot length/
mmmean RCS of Slot (±30°)/dBsm peak RCS of slot (0°)/dBsm simulated value estimated value simulated value estimated value 50 −54.73 / −49.17 / 100 −51.51 −51.66 −43.03 −43.19 200 −48.20 −48.63 −36.70 −37.24 400 −45.05 −45.63 −30.54 −31.22 表 3 不同类型的缝隙RCS对比
Table 3. RCS comparison of slots with different types
type of slot simulation results/dBsm rapid assessment/dBsm straight slot −45.05 −45.63 sharp-tipped slot −66.71 −65.34 double-tapered slot −65.20 −64.97 -
[1] 桑建华, 张宗斌, 王烁. 低RCS飞行器表面弱散射源研究[J]. 航空工程进展, 2012, 3(3): 257-262 doi: 10.16615/j.cnki.1674-8190.2012.03.008Sang Jianhua, Zhang Zongbin, Wang Shuo. Research on the radar cross section of weak scatterers on stealth vehicle[J]. Advances in Aeronautical Science and Engineering, 2012, 3(3): 257-262 doi: 10.16615/j.cnki.1674-8190.2012.03.008 [2] 桑建华. 飞行器隐身技术[M]. 北京: 航空工业出版社, 2013Sang Jianhua. Low-observable technologies of aircraft[M]. Beijing: Aviation Industry Press, 2013 [3] 张振利, 倪维立. 缝隙及其与边缘的相互作用对目标散射的影响[J]. 电波科学学报, 2001, 16(3): 301-305,309 doi: 10.3969/j.issn.1005-0388.2001.03.005Zhang Zhenli, Ni Weili. The scattering by gaps and the multiple scattering between gaps and edges[J]. Chinese Journal of Radio Science, 2001, 16(3): 301-305,309 doi: 10.3969/j.issn.1005-0388.2001.03.005 [4] 柳汀. 隐身飞行器表面缝隙RCS的仿真分析[J]. 吉林化工学院学报, 2016, 33(5): 59-62 doi: 10.16039/j.cnki.cn22-1249.2016.05.015Liu Ting. Simulation analysis on RCS of slits on stealth aircraft[J]. Journal of Jilin Institute of Chemical Technology, 2016, 33(5): 59-62 doi: 10.16039/j.cnki.cn22-1249.2016.05.015 [5] GJB 5022-2001, 室内场缩比目标雷达散射截面测试方法[S]GJB 5022-2001, Method for measurement of radar cross section of scale target indoor range[S] [6] 梁爽, 刘庆杰, 聂暾, 等. RCS测试中的低散射载体设计及仿真分析[J]. 计算机测量与控制, 2017, 25(8): 104-107,111 doi: 10.16526/j.cnki.11-4762/tp.2017.08.027Liang Shuang, Liu Qingjie, Nie Tun, et al. Design and simulation of low scattering carrier in RCS measurement[J]. Computer Measurement & Control, 2017, 25(8): 104-107,111 doi: 10.16526/j.cnki.11-4762/tp.2017.08.027 [7] 黄沛霖, 刘战合. 飞行器表面缝隙电磁散射特性研究[J]. 航空学报, 2008, 29(3): 675-680Huang Peilin, Liu Zhanhe. Research on electromagnetic scattering characteristics of slits on aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(3): 675-680 [8] 赵京城, 杨涛, 付鑫如, 等. 基于载体对消方法的缝隙小角域散射特性研究[J]. 北京航空航天大学学报, 2018, 44(7): 1554-1561 doi: 10.13700/j.bh.1001-5965.2017.0498Zhao Jingcheng, Yang Tao, Fu Xinru, et al. Scattering characteristics of slit based on carrier cancellation method in small angular domain[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(7): 1554-1561 doi: 10.13700/j.bh.1001-5965.2017.0498 [9] 赵京城, 付鑫如, 杨涛, 等. 一种适于缝隙等表面缺陷类目标的评估方法[J]. 电子与信息学报, 2019, 41(2): 302-308 doi: 10.11999/JEIT180378Zhao Jingcheng, Fu Xinru, Yang Tao, et al. Assessment method for gaps and other surface defects[J]. Journal of Electronics & Information Technology, 2019, 41(2): 302-308 doi: 10.11999/JEIT180378 [10] 于天立, 董文锋. 表面缝隙对透波材料RCS的影响分析[J]. 计算机仿真, 2023, 40(5): 19-24,31 doi: 10.3969/j.issn.1006-9348.2023.05.004Yu Tianli, Dong Wenfeng. Analysis of influence of surface gap on RCS of wave-transmitting materials[J]. Computer Simulation, 2023, 40(5): 19-24,31 doi: 10.3969/j.issn.1006-9348.2023.05.004 [11] 李南京, 冯引良, 胡楚锋, 等. 基于二维微波成像的共形天线RCS提取方法[J]. 红外与激光工程, 2013, 42(7): 1945-1949 doi: 10.3969/j.issn.1007-2276.2013.07.052Li Nanjing, Feng Yinliang, Hu Chufeng, et al. Extracting RCS of conformal antenna based on 2-D microwave imaging[J]. Infrared and Laser Engineering, 2013, 42(7): 1945-1949 doi: 10.3969/j.issn.1007-2276.2013.07.052 [12] 李南京, 徐志浩, 胡楚锋, 等. 基于成像提取的RCS精确测量方法研究[J]. 仪器仪表学报, 2017, 38(1): 74-82 doi: 10.19650/j.cnki.cjsi.2017.01.010Li Nanjing, Xu Zhihao, Hu Chufeng, et al. Research on accurate radar cross section measurement method based on imaging extraction[J]. Chinese Journal of Scientific Instrument, 2017, 38(1): 74-82 doi: 10.19650/j.cnki.cjsi.2017.01.010 [13] Hu Chufeng, Li Nanjing, Chen Weijun, et al. High-precision RCS measurement of aircraft’s weak scattering source[J]. Chinese Journal of Aeronautics, 2016, 29(3): 772-778. doi: 10.1016/j.cja.2016.03.003 [14] 刘战合, 姬金祖, 王菁, 等. 飞行器表面规律分布的电磁缺陷散射机理[J]. 系统工程与电子技术, 2017, 39(11): 2428-2433 doi: 10.3969/j.issn.1001-506X.2017.11.06Liu Zhanhe, Ji Jinzu, Wang Jing, et al. Scattering mechanism of electromagnetic discontinuities regularly distributed on aircraft[J]. Systems Engineering and Electronics, 2017, 39(11): 2428-2433 doi: 10.3969/j.issn.1001-506X.2017.11.06 [15] 马若冰, 艾俊强, 崔力, 等. 飞机舵面缝隙缺陷建模及电磁散射特性分析[J]. 电讯技术, 2022, 62(3): 336-341 doi: 10.3969/j.issn.1001-893x.2022.03.010Ma Ruobing, Ai Junqiang, Cui Li, et al. Geometric modeling and electromagnetic scattering characteristics analysis of aircraft control surface slots[J]. Telecommunication Engineering, 2022, 62(3): 336-341 doi: 10.3969/j.issn.1001-893x.2022.03.010 [16] 于天立, 董文锋, 刘文俭, 等. 表面介质缝隙对低散射载体RCS影响分析[J]. 空军预警学院学报, 2020, 34(6): 408-413 doi: 10.3969/j.issn.2095-5839.2020.06.004Yu Tianli, Dong Wenfeng, Liu Wenjian, et al. Analysis of influence of surface dielectric gap on RCS of low scattering carrier[J]. Journal of Air Force Early Warning Academy, 2020, 34(6): 408-413 doi: 10.3969/j.issn.2095-5839.2020.06.004 [17] 姬金祖, 黄沛霖, 马云鹏, 等. 隐身原理[M]. 北京: 北京航空航天大学出版社, 2018Ji Jinzu, Huang Peilin, Ma Yunpeng, et al. Principles of stealth[M]. Beijing: Beijing University of Aeronautics and Astronautics Press, 2018 -
下载: