[1] 张林, 杜凯. 激光惯性约束聚变靶技术现状及其发展趋势[J]. 强激光与粒子束, 2013, 25(12):3091-3097. (Zhang Lin, Du Kai. Target technologies for laser inertial confinement fusion: State-of-the-art and future perspective[J]. High Power Laser and Particle Beams, 2013, 25(12): 3091-3097 doi: 10.3788/HPLPB20132512.3091
[2]

Hamza A V, Nikroo A, Alger E, et al. Target development for the National Ignition Campaign[J]. Fusion Science and Technology, 2016, 69: 395-406. doi: 10.13182/FST15-163
[3]

Kritcher A L, Clark D, Haan S, et al. Comparison of plastic, high density carbon, and beryllium as indirect drive NIF ablators[J]. Physics of Plasmas, 2018, 25: 056309. doi: 10.1063/1.5018000
[4]

Landen O L, Edwards J, Haan S W, et al. Capsule implosion optimization during the indirect-drive National Ignition Campaign[J]. Physics of Plasmas, 2011, 18: 051022.
[5]

Benredjem D, Jarrah W, Gilleron F, et al. Opacity calculations Ge and Si dopants in ICF[J]. High Energy Density Physics, 2015, 16: 23-27. doi: 10.1016/j.hedp.2015.04.005
[6]

Hu S X, Fiksel G, Goncharov V N, et al. Mitigating laser imprint in direct-drive inertial confinement fusion implosions with high-Z dopants[J]. Physical Review Letters, 2012, 108: 195003. doi: 10.1103/PhysRevLett.108.195003
[7]

Dittrich T R, Hurricane O A, Callahan D A, et al. Design of a high-foot high-adiabat ICF capsule for the National Ignition Facility[J]. Physical Review Letters, 2014, 112: 055002. doi: 10.1103/PhysRevLett.112.055002
[8]

Haan S W, Huang H, Johnson M A, et al. Instability growth seeded by oxygen in CH shells on the National Ignition Facility[J]. Physics of Plasmas, 2015, 22: 032708. doi: 10.1063/1.4916300
[9]

Haan S W, Clark D S, Baxamusa S H, et al. Update 2015 on target fabrication requirements for NIF layered implosions, with emphasis on capsule support and oxygen modulations in GDP[J]. Fusion Science and Technology, 2016, 70: 121-126. doi: 10.13182/FST15-244
[10]

Huang H, Carlson L C, Requieron W, et al. Quantitative defect analysis of ablator capsule surfaces using a Leica confocal microscope and a high-density atomic force microscope[J]. Fusion Science and Technology, 2016, 70: 377-386. doi: 10.13182/FST15-220
[11]

Nikroo A, Czechowicz D G, Castillo E R, et al. Production of higher strength thin walled glow discharge polymer shells for cryogenic experiments at OMEGA[R]. GA-A23881, 2002.
[12]

Huang H, Haas D M, Lee Y T, et al. Oxygen profile determination in NIF GDP capsules using contact radiography[J]. Fusion Science and Technology, 2013, 63: 142-150. doi: 10.13182/FST13-TFM20-26
[13]

Chen K C, Cook R C, Huang H, et al. Fabrication of graded germanium-doped CH shells[J]. Fusion Science and Technology, 2006, 49: 750-756. doi: 10.13182/FST06-A1196
[14]

Brusasco R, Saculla M, and Cook R. Preparation of germanium doped plasma polymerized coatings as inertial confinement fusion target ablators[J]. J Vac Sci Technol, 1995, A13(3): 948-954.
[15]

Reynolds H, Baxamusa S, Haan S W, et al. Surface oxygen micropatterns on glow discharge polymer targets by photo irradiation[J]. Journal of applied physics, 2016, 119: 085305. doi: 10.1063/1.4942219
[16]

Baxamusa S, Laurence T, Worthington M, et al. Photo-oxidation of polymer-like amorphous hydrogenated carbon under visible light illumination[J]. Polymer Degradation and Stability, 2015, 122: 133-138. doi: 10.1016/j.polymdegradstab.2015.11.001
[17]

Lepro X, Ehrmann P, Menapace J, et al. Ultralow stress, thermally stable cross-linked polymer films of polydivinylbenzene (PDVB)[J]. Langmuir, 2017, 33: 5204-5212. doi: 10.1021/acs.langmuir.7b01403
[18]

Lepro X, Ehrmann P, Rodrıguez J, et al. Enhancing the oxidation stability of polydivinylbenzene films via residual pendant vinyl passivation[J]. Chemistry Select, 2018, 3: 500-506.
[19]

Baxamusa S H, Lepró X, Lee T, et al. Initiated chemical vapor deposition polymers for high peak-power laser targets[J]. Thin Solid Films, 2017, 635: 37-41. doi: 10.1016/j.tsf.2016.11.055
[20]

Biener J, Mirkarimi P B, Tringe J W, et al. Diamond ablators for Inertial Confinement Fusion[R]. UCRL-JRNL-213214, 2005.
[21]

Biener J, Mirkarimi P B, Tringe J W, et al. Diamond ablators for Inertial Confinement Fusion[J]. Fusion Science and Technology, 2006, 49: 737-742. doi: 10.13182/FST49-737
[22]

Clark D S, Kritcher A L, Yi S A, et al. Capsule physics comparison of National Ignition Facility implosion designs using plastic, high density carbon, and beryllium ablators[J]. Physics of Plasmas, 2018, 25: 032703. doi: 10.1063/1.5016874
[23]

Hopkins L B, LePape S, Divol L, et al. Toward a burning plasma state using diamond ablator inertially confined fusion (ICF) implosions on the National Ignition Facility (NIF)[J]. Plasma Phys Control Fusion, 2019, 61: 014023. doi: 10.1088/1361-6587/aad97e
[24]

Biener J, Ho D D, Wild C, E, et al. Diamond spheres for inertial confinement fusion[J]. Nucl Fusion, 2009, 49: 112001. doi: 10.1088/0029-5515/49/11/112001
[25]

Kato S, Hiroki, Yamada, et al. Synthesis and characterization of diamond capsules for direct-drive inertial confinement fusion[J]. Diamond & Related Materials, 2018, 86: 15-19.
[26]

Dawedeit C, Kucheyev S O, Shin S J, et al. Grain size dependent physical and chemical properties of thick CVD diamond films for high energy density physics experiments[J]. Diam Relat Mater, 2013, 40: 75-81. doi: 10.1016/j.diamond.2013.10.001
[27]

Ohmagari S, Yamada H, Umezawa H, et al. Growth and characterization of freestanding p+ diamond (100) substrates prepared by hot-filament chemical vapor deposition[J]. Diam Relat Mater, 2018, 81: 33-37. doi: 10.1016/j.diamond.2017.11.003
[28]

Zylstra A B, Yi S A, MacLaren S, et al. Beryllium capsule implosions at a case-to-capsule ratio of 3.7 on the National Ignition Facility[J]. Physics of Plasmas, 2018, 25: 102704. doi: 10.1063/1.5041285
[29]

Simakov A N, Wilson D C, Yi S A, et al. Performance of beryllium targets with full-scale capsules in low-fill 6.72-mm hohlraums on the National Ignition Facility[J]. Physics of Plasmas, 2017, 24: 052704. doi: 10.1063/1.4983141
[30]

Xu H, Youngblood K P, Huang H, et al. Characterization of thin copper diffusion barrier layer in beryllium capsules[J]. Fusion Science and Technology, 2013, 63: 202-207. doi: 10.13182/FST13-TFM20-16
[31]

Huang H, Xu H W, Youngblood K P, et al. Inhomogeneous copper diffusion in NIF beryllium ablator capsules[J]. Fusion Science and Technology, 2013, 63: 190-201. doi: 10.13182/FST13-TFM20-24
[32]

Youngblood K P, Huang H, Xu H W, et al. Thin oxides as a copper diffusion barrier for NIF beryllium ablator capsules[J]. Fusion Science and Technology, 2013, 63: 209-212. doi: 10.13182/FST13-A16907
[33]

Hoppe M L, Castillo E. Polishing of beryllium capsules to meet NIF specifications[J]. Journal de Physique IV (Proceedings), 2006, 133: 895-898. doi: 10.1051/jp4:2006133180
[34]

Bae J, Rodriguez J, Kong C, et al. Beryllium capsule processing improvements: Polishing and mandrel removal[R]. IFT\P2019-012, 2019.
[35]

Xu H W, Alford C S, Cooley J C, et al. Beryllium capsule coating development for NIF targets[J]. Fusion Science and Technology, 2007, 51(4): 547-552. doi: 10.13182/FST51-547
[36]

Bhandarkar S, Letts S A, Buckley S, et al. Removal of the mandrel from beryllium sputter coated capsules for NIF targets[J]. Fusion Science and Technology, 2007, 51(4): 564-571. doi: 10.13182/FST07-A1445
[37]

Nagel S R, Haan S W, Rygg J R, et al. Effect of the mounting membrane on shape in inertial confinement fusion implosions[J]. Physics of plasmas, 2015, 22: 022704. doi: 10.1063/1.4907179
[38]

Meezan N B, Edwards M J, Hurricane O A, et al. Indirect drive ignition at the National Ignition Facility[J]. Plasma Physics and Controlled Fusion, 2017, 59: 014021. doi: 10.1088/0741-3335/59/1/014021
[39]

Smalyuk V A, Robey H F, Alday C L, et al. Review of hydro-instability experiments with alternate capsule supports in indirect drive implosions on the National Ignition Facility[J]. Physics of Plasmas, 2018, 25: 072705. doi: 10.1063/1.5042081
[40]

Weber C R, Casey D T, Clark D S, et al. Improving ICF implosion performance with alternative capsule supports[J]. Physics of Plasmas, 2017, 24: 056302. doi: 10.1063/1.4977536
[41]

Hammel B A, Tommasini R, Clark D S, et al. Simulations and experiments of the growth of the “tent” perturbation in NIF ignition implosions[J]. Journal of Physics: Conference Series, 2016, 717: 012021. doi: 10.1088/1742-6596/717/1/012021
[42]

Haan S W, Atherton J, Clark D S, et al. NIF ignition campaign target performance and requirements: status May 2012[R]. LLNL-PROC-583732, 2012.
[43]

Haan S W, Lindl J D, Callahan D A, et al. Point design targets, specifications, and requirements for the 2010 ignition campaign on the National Ignition Facility[J]. Physics of Plasmas, 2011, 18: 051001. doi: 10.1063/1.3592169
[44]

Hammel B A, Weber C R, Stadermann M, et al. A “polar contact” tent for reduced perturbation and improved performance of NIF ignition capsules[J]. Physics of Plasmas, 2018, 25: 082714. doi: 10.1063/1.5032121
[45] 易勇, 卢忠远, 唐永建, 等. 激光聚变靶丸磁悬浮系统设[J]. 强激光与粒子束, 2006, 18(9):1504-1506. (Yi Yong, Lu Zhongyuan, Tang Yongjian, et al. Design of magnetic suspension system for ICF target[J]. High Power Laser and Particle Beams, 2006, 18(9): 1504-1506
[46] 宋丽贤, 卢忠远, 廖其龙. ICF 用磁性玻璃靶丸悬浮磁场的确定及材料制备初步研究[J]. 强激光与粒子束, 2005, 17(11):1705-1708. (Song Lixian, Lu Zhongyuan, Liao Qilong. Establishment of levitation magnetic field and preparation of materials for ICF magnetic glass targets[J]. High Power Laser and Particle Beams, 2005, 17(11): 1705-1708
[47]

Glocker D A. A proposed design for multishell cryogenic laser fusion targets using superconducting levitation[J]. Appl Phys Lett, 1981, 39: 478-479. doi: 10.1063/1.92780
[48]

Kreutz Ronald. Pellet delivery for the conceptual inertial confinement fusion reactor HIBALL[J]. Fusion Technology, 1985, 8(3): 2708-2720. doi: 10.13182/FST85-A24692
[49]

Yoshida H, Katakami K, Sakagami Y, et al. Magnetic suspension of a pellet for inertial confinement fusion[J]. Laser and Particle Beams, 1993, 11(02): 455. doi: 10.1017/S0263034600005048
[50]

Sakagami Y, Yoshida H, Yasufuku K, et al. Mechanism of optical forces of magnetically suspended pellet for laser fusion scheme[J]. Fusion Engineering and Design, 1999, 44: 471-473. doi: 10.1016/S0920-3796(98)00353-6
[51]

Tsuji R. Trajectory adjusting system using a magnetic lens for a Pb-coated superconducting IFE target[J]. Fusion Engineering and Design, 2006, 81(23/24): 2877-2885.
[52]

Ishigaki Y, Ueda H, Agatsuma K, et al. Accurate position control of active magnetic levitation using sphere-shaped HTS bulk for Inertial Nuclear Fusion[J]. IEEE Transn Applied Superconductivity, 2009, 19(3): 2133-2136. doi: 10.1109/TASC.2009.2017898
[53]

Aleksandrova I V, Koresheva E R. Review on high repetition rate and mass production of the cryogenic targets for laser IFE[J]. High Power Laser Science and Engineering, 2017, e11(5): 1-24.
[54]

Baker A A, Aji L B, Bae J H, et al. Vapor annealing synthesis of non-epitaxial MgB2 films on glassy carbon[J]. Superconductor Science and Technology, 2018, 31: 055006. doi: 10.1088/1361-6668/aab4eb
[55]

Li X, Xiao T, Chen F, et al. A novel superconducting magnetic levitation method to support the laser fusion capsule by using permanent magnets[J]. Matter and Radiation at Extremes, 2018, 3(3): 104-109. doi: 10.1016/j.mre.2018.01.004
[56]

Young P E, Rosen M D, Hammer J H, et al. Demonstration of the density dependence of X-ray flux in a laser-driven hohlraum[J]. Physical Review Letters, 2008, 101(3): 81-84.
[57]

Hurricane O A, Callahan D A, Casey D T, et al. Inertially confined fusion plasmas dominated by alpha-particle self-heating[J]. Nature Physics, 2016, 12: 800-807. doi: 10.1038/nphys3720
[58]

Döppner T, Callahan D A, Hurricane O A, et al. Demonstration of high performance in layered deuterium-tritium capsule implosions in uranium hohlraums at the National Ignition Facility[J]. Physical Review Letters, 2015, 115: 055001. doi: 10.1103/PhysRevLett.115.055001
[59]

Le Pape S, Berzak Hopkins L F, Divol L, et al. Fusion energy output greater than the kinetic energy of an imploding shell at the National Ignition Facility[J]. Physical Review Letters, 2018, 120: 245003. doi: 10.1103/PhysRevLett.120.245003
[60]

Kline J L, Batha S H, Benedetti L R, et al. Progress of indirect drive inertial confinement fusion in the United States[J]. Nuclear Fusion, 2019(59): 112018.
[61]

Ping Y, Smalyuk V A, Amendt P, et al. Enhanced energy coupling for indirectly driven inertial confinement fusion[J]. Nature Physics, 2019, 15(2): 138-141. doi: 10.1038/s41567-018-0331-5
[62]

Amendt P, Cerjan C, Hinkel D E, et al. Rugby-like hohlraum experimental designs for demonstrating X-ray drive enhancement[J]. Physics of Plasmas, 2008, 15: 012702. doi: 10.1063/1.2825662
[63]

Vandenboomgaerde M, Bastian J, Casner A, et al. Prolate-spheroid (“rugby-shaped”) hohlraum for inertial confinement fusion[J]. Physical Review Letters, 2007, 99: 065004. doi: 10.1103/PhysRevLett.99.065004
[64]

Amendt P, Ross J S, Milovich J L, et al. Low-adiabat rugby hohlraum experiments on the National Ignition Facility: Comparison with high-flux modeling and the potential for gas-wall interpenetration[J]. Physics of Plasmas, 2014, 21: 112703. doi: 10.1063/1.4901195
[65]

Masson-Laborde P E, Monteil M C, Tassin V, et al. Laser plasma interaction on rugby hohlraum on the Omega Laser Facility: Comparisons between cylinder, rugby, and elliptical hohlraums[J]. Physics of Plasmas, 2016, 23: 022703. doi: 10.1063/1.4941706
[66]

Robey H F, Berzak Hopkins L, Milovich J L, et al. The I-Raum: A new shaped hohlraum for improved inner beam propagation in indirectly-driven ICF implosions on the National Ignition Facility[J]. Physics of Plasmas, 2018, 25: 012711. doi: 10.1063/1.5010922
[67]

Tommasini R, Belyaev M, Cerjan C, et al. Ultra-high (>30%) coupling efficiency designs for demonstrating central hot-spot ignition on the National Ignition Facility using a Frustraum[J]. Physics of Plasmas, 2019, 26: 082707. doi: 10.1063/1.5099934
[68]

Bhandarkar S, Baumann T, Alfonso N, et al. Fabrication of low-density foam liners in hohlraums for NIF targets[J]. Fusion Science and Technology, 2017, 73(2): 194-209.
[69]

Horwood C, Stadermann M, Biener M, et al. Platinum electrodeposition for supported ALD templated foam hohlraum liners[J]. Fusion Science and Technology, 2017, 73(2): 219-228.
[70]

Clark D S, Weber C R, Kritcher A L, et al. Modeling and projecting implosion performance for the National Ignition Facility[J]. Nuclear Fusion, 2019, 59: 032008. doi: 10.1088/1741-4326/aabcf7
[71]

Edwards M J, Marinak M, Dittrich T, et al. The effects of fill tubes on the hydrodynamics of ignition targets and prospects for ignition[J]. Phys Plasmas, 2005, 12: 056318. doi: 10.1063/1.1914809
[72]

Hammel B A, Haan S W, Clark D S, et al. High-mode Rayleigh-Taylor growth in NIF ignition capsules[J]. High Energy Density Physics, 2010, 6(2): 171. doi: 10.1016/j.hedp.2009.12.005
[73]

MacPhee A G, Smalyuk V A, Landen O L, et al. Mitigation of X-ray shadow seeding of hydrodynamic instabilities on inertial confinement fusion capsules using a reduced diameter fuel fill-tube[J]. Physics of Plasmas, 2018, 25: 054505. doi: 10.1063/1.5025183
[74]

Haan S W, Kritcher A L, Clark D S, et al. Comparison of the three NIF ablators[R]. LLNL-TR-741418, 2017.
[75]

Nikroo A. Target fabrication at Lawrence Livermore National Laboratory[R]. LLNL-PRES-956011, 2019.