| Citation: | Xu Yanlong, Li Wenge, Zhao Yuantao, et al. Research progress on wettability of laser-textured aluminum alloy surfaces[J]. High Power Laser and Particle Beams, 2025, 37: 121001. doi: 10.11884/HPLPB202537.250139 |
| [1] |
吴国荣, 黄诗雯, 郭跃, 等. 面向碳中和的汽车生命周期材料发展与展望[J]. 材料导报, 2023, 37: 22090281
Wu Guorong, Huang Shiwen, Guo Yue, et al. Development and prospect of carbon neutral automotive life-cycle materials[J]. Materials Reports, 2023, 37: 22090281
|
| [2] |
徐艳龙, 李文戈, 喻忠翰, 等. 基于激光毛化技术的5052铝合金粘接试验研究[J]. 强激光与粒子束, 2022, 34: 031010 doi: 10.11884/HPLPB202234.210283
Xu Yanlong, Li Wenge, Yu Zhonghan, et al. Research on bonding test of 5052 aluminum alloy based on laser texturing technology[J]. High Power Laser and Particle Beams, 2022, 34: 031010 doi: 10.11884/HPLPB202234.210283
|
| [3] |
Deng Qing, Zhang Po, Li Xiaozhi, et al. Effect of seawater salinity on the fretting corrosion behavior of nickel-aluminum bronze (NAB) alloy[J]. Tribology International, 2024, 193: 109357. doi: 10.1016/j.triboint.2024.109357
|
| [4] |
Xing Wei, Li Zu, Yang Haiou, et al. Anti-icing aluminum alloy surface with multi-level micro-nano textures constructed by picosecond laser[J]. Materials & Design, 2019, 183: 108156.
|
| [5] |
Milošev I. Corrosion inhibition of aluminium alloys by molybdate ions: a critical review of the chemistry, mechanisms and applications[J]. Corrosion Science, 2024, 229: 111854. doi: 10.1016/j.corsci.2024.111854
|
| [6] |
Zhang Daquan, Yan Zixuan, Gao Lixin, et al. Corrosion behavior of AA5052 aluminum alloy in the presence of heavy metal ions in 3.5% NaCl solution under negative pressure[J]. Desalination, 2024, 570: 117082. doi: 10.1016/j.desal.2023.117082
|
| [7] |
Nkoua C, Josse C, Proietti A, et al. Corrosion behaviour of the microbially modified surface of 5083 aluminium alloy[J]. Corrosion Science, 2023, 210: 110812. doi: 10.1016/j.corsci.2022.110812
|
| [8] |
Rodič P, Kovač N, Kralj S, et al. Anti-corrosion and anti-icing properties of superhydrophobic laser-textured aluminum surfaces[J]. Surface and Coatings Technology, 2024, 494: 131325. doi: 10.1016/j.surfcoat.2024.131325
|
| [9] |
Li Kai, Lei Xiaowei, Ding Zhihan, et al. Super anti-corrosion surface of Al-Li alloy via femtosecond laser ablation treatment in water[J]. Journal of Alloys and Compounds, 2024, 971: 172704. doi: 10.1016/j.jallcom.2023.172704
|
| [10] |
Tian Ze, Lei Zhenglong, Chen Xi, et al. Nanosecond pulsed fiber laser cleaning of natural marine micro-biofoulings from the surface of aluminum alloy[J]. Journal of Cleaner Production, 2020, 244: 118724. doi: 10.1016/j.jclepro.2019.118724
|
| [11] |
Guerrero-Vacas G, Fusco S, Rodríguez-Valverde M Á, et al. Manufacturing hydrophobic surfaces on aluminium substrates by micro-milling with end-ball nose tools[J]. Journal of Manufacturing Processes, 2024, 124: 24-37. doi: 10.1016/j.jmapro.2024.05.086
|
| [12] |
Lambiase F, Genna S. Moisture-induced defects produced by direct laser joining of AA7075 aluminum and PEEK[J]. Optics & Laser Technology, 2023, 165: 109553.
|
| [13] |
倪敬, 李斌, 许静. 激光微织构拉刀制备与能量残留[J]. 强激光与粒子束, 2016, 28: 099001 doi: 10.11884/HPLPB201628.160048
Ni Jing, Li Bin, Xu Jing. Preparation of laser micro-textured broach and residual energy[J]. High Power Laser and Particle Beams, 2016, 28: 099001 doi: 10.11884/HPLPB201628.160048
|
| [14] |
Young T. An essay on the cohesion of fluids[J]. Proceedings of the Royal Society of London, 1832, 1: 171-172.
|
| [15] |
Wenzel R N. Resistance of solid surfaces to wetting by water[J]. Industrial & Engineering Chemistry, 1936, 28(8): 988-994.
|
| [16] |
Cassie A B D, Baxter S. Wettability of porous surfaces[J]. Transactions of the Faraday Society, 1944, 40: 546-551. doi: 10.1039/tf9444000546
|
| [17] |
Li Zhe, Wang Sijie, Zheng Wanqing, et al. A review of dynamic monitoring technology and application research of laser cleaning interface[J]. Measurement, 2024, 238: 115311. doi: 10.1016/j.measurement.2024.115311
|
| [18] |
Hou Liangpeng, Yin Fengshi, Wang Sijie, et al. A review of thermal effects and substrate damage control in laser cleaning[J]. Optics & Laser Technology, 2024, 174: 110613.
|
| [19] |
Tong Wei, Xiong Dangsheng. Direct laser texturing technique for metal surfaces to achieve superhydrophobicity[J]. Materials Today Physics, 2022, 23: 100651. doi: 10.1016/j.mtphys.2022.100651
|
| [20] |
Zhu Guodong, Xu Zhenhai, Jin Yang, et al. Mechanism and application of laser cleaning: a review[J]. Optics and Lasers in Engineering, 2022, 157: 107130. doi: 10.1016/j.optlaseng.2022.107130
|
| [21] |
Wang Xincai, Zheng Hongyu, Wan Yinchi, et al. Picosecond laser surface texturing of a Stavax steel substrate for wettability control[J]. Engineering, 2018, 4(6): 816-821. doi: 10.1016/j.eng.2018.10.006
|
| [22] |
Zhao Jingnan, Guo Jian, Shrotriya P, et al. A rapid one-step nanosecond laser process for fabrication of super-hydrophilic aluminum surface[J]. Optics & Laser Technology, 2019, 117: 134-141.
|
| [23] |
Ngo C V, Chun D M. Control of laser-ablated aluminum surface wettability to superhydrophobic or superhydrophilic through simple heat treatment or water boiling post-processing[J]. Applied Surface Science, 2018, 435: 974-982. doi: 10.1016/j.apsusc.2017.11.185
|
| [24] |
Lu Yao, Ding Ye, Wang Maolu, et al. An environmentally friendly laser cleaning method to remove oceanic micro-biofoulings from AH36 steel substrate and corrosion protection[J]. Journal of Cleaner Production, 2021, 314: 127961. doi: 10.1016/j.jclepro.2021.127961
|
| [25] |
Samanta A, Wang Qinghua, Shaw S K, et al. Roles of chemistry modification for laser textured metal alloys to achieve extreme surface wetting behaviors[J]. Materials & Design, 2020, 192: 108744.
|
| [26] |
Vorobyev A Y, Guo Chunlei. Making human enamel and dentin surfaces superwetting for enhanced adhesion[J]. Applied Physics Letters, 2011, 99: 193703. doi: 10.1063/1.3660579
|
| [27] |
Qi Yingchun, Sha Pengwei, Yang Kun, et al. Construction and parameter optimization of LPBF-NiTi alloy bionic superhydrophobic surface based on laser processing[J]. Journal of Materials Research and Technology, 2023, 24: 9462-9475. doi: 10.1016/j.jmrt.2023.05.162
|
| [28] |
Huang Wuji, Nelson B, Tian S, et al. Superhydrophobic surface processing for metal 3D printed parts[J]. Applied Materials Today, 2022, 29: 101630. doi: 10.1016/j.apmt.2022.101630
|
| [29] |
Guo Shuaicheng, Si Ruizhe, Dai Qingli, et al. A critical review of corrosion development and rust removal techniques on the structural/environmental performance of corroded steel bridges[J]. Journal of Cleaner Production, 2019, 233: 126-146. doi: 10.1016/j.jclepro.2019.06.023
|
| [30] |
Castaño J G, Velilla E, Correa L, et al. Ceramic insulators coated with titanium dioxide films: properties and self-cleaning performance[J]. Electric Power Systems Research, 2014, 116: 182-186. doi: 10.1016/j.jpgr.2014.06.009
|
| [31] |
Kant K, Pitchumani R. Fractal textured glass surface for enhanced performance and self-cleaning characteristics of photovoltaic panels[J]. Energy Conversion and Management, 2022, 270: 116240. doi: 10.1016/j.enconman.2022.116240
|
| [32] |
Li Xinlin, Wang Guoyong, Moita A S, et al. Fabrication of bio-inspired non-fluorinated superhydrophobic surfaces with anti-icing property and its wettability transformation analysis[J]. Applied Surface Science, 2020, 505: 144386. doi: 10.1016/j.apsusc.2019.144386
|
| [33] |
Ate A, Benam B P, Mohammadilooey M, et al. Pool boiling heat transfer on superhydrophobic, superhydrophilic, and superbiphilic surfaces at atmospheric and sub-atmospheric pressures[J]. International Journal of Heat and Mass Transfer, 2023, 201: 123582. doi: 10.1016/j.ijheatmasstransfer.2022.123582
|
| [34] |
Betz A R, Jenkins J, Kim C J, et al. Boiling heat transfer on superhydrophilic, superhydrophobic, and superbiphilic surfaces[J]. International Journal of Heat and Mass Transfer, 2013, 57(2): 733-741. doi: 10.1016/j.ijheatmasstransfer.2012.10.080
|
| [35] |
Çoban O, Bilgiç E, Akman E, et al. Laser treated novel textures for adhesion performance of aluminum alloy joints exposed to corrosion[J]. International Journal of Adhesion and Adhesives, 2024, 132: 103732. doi: 10.1016/j.ijadhadh.2024.103732
|
| [36] |
Li Wenqin, Jin Yang, Gu Junyi, et al. Critical surface characteristics for coating adhesion and friction behavior of aluminum alloys after laser cleaning[J]. Journal of Materials Processing Technology, 2024, 332: 118549. doi: 10.1016/j.jmatprotec.2024.118549
|
| [37] |
Milles S, Soldera M, Kuntze T, et al. Characterization of self-cleaning properties on superhydrophobic aluminum surfaces fabricated by direct laser writing and direct laser interference patterning[J]. Applied Surface Science, 2020, 525: 146518. doi: 10.1016/j.apsusc.2020.146518
|
| [38] |
Rodrigues S P, Alves C F A, Cavaleiro A, et al. Water and oil wettability of anodized 6016 aluminum alloy surface[J]. Applied Surface Science, 2017, 422: 430-442. doi: 10.1016/j.apsusc.2017.05.204
|
| [39] |
Zhang Yuliang, Li Xinxin, Lu Libin, et al. Anti-icing polyurethane coating on glass fiber-reinforced plastics induced by femtosecond laser texturing[J]. Applied Surface Science, 2024, 662: 160077. doi: 10.1016/j.apsusc.2024.160077
|
| [40] |
Rico V, Mora J, García P, et al. Robust anti-icing superhydrophobic aluminum alloy surfaces by grafting fluorocarbon molecular chains[J]. Applied Materials Today, 2020, 21: 100815. doi: 10.1016/j.apmt.2020.100815
|
| [41] |
Liu Dongdong, Liu Ri, Cao Liang, et al. Fabrication of periodic hierarchical structures with anti-icing performance by direct laser interference lithography and hydrothermal treatment[J]. Surface and Coatings Technology, 2023, 471: 129819. doi: 10.1016/j.surfcoat.2023.129819
|
| [42] |
Wei Dongsong, Wang Jinguo, Wang Huiyuan, et al. Anti-corrosion behaviour of superwetting structured surfaces on Mg-9Al-1Zn magnesium alloy[J]. Applied Surface Science, 2019, 483: 1017-1026. doi: 10.1016/j.apsusc.2019.03.286
|
| [43] |
Wang Wei, Li Xiangjin, Liu Weijun, et al. Experimental study on hydrophobic properties and corrosivity of laser cleaned 7075 aluminum alloy anodized film surface[J]. Optics & Laser Technology, 2023, 166: 109615.
|
| [44] |
田泽. 铝合金表面海洋微生物膜层激光清洗及生长抑制机理[D]. 哈尔滨: 哈尔滨工业大学, 2020
Tian Ze. Mechanisms of laser cleaning and growth inhibition of marine microbial film on the surface of aluminum alloys[D]. Harbin: Harbin Institute of Technology, 2020
|
| [45] |
郭乐扬, 阮海妮, 李文戈, 等. 船舶减阻表面工程技术研究进展[J]. 表面技术, 2022, 51(9): 53-64,73
Guo Leyang, Ruan Haini, Li Wenge, et al. Research progress of surface engineering technology for ship drag reduction[J]. Surface Technology, 2022, 51(9): 53-64,73
|
| [46] |
刘克, 刘子源, 陶海岩, 等. 飞秒激光制备可调控铝合金表面微沟槽结构研究[J]. 长春理工大学学报(自然科学版), 2022, 45(3): 6-13
Liu Ke, Liu Ziyuan, Tao Haiyan, et al. Research on femtosecond laser fabrication of adjustable micro-groove structure on aluminum alloy surface[J]. Journal of Changchun University of Science and Technology (Natural Science Edition), 2022, 45(3): 6-13
|
| [47] |
Li Jingcheng, Zhao Yixuan, Zhang Xueyan, et al. Influence of bionic texture on the mechanical properties of 6061Al/CFRTP laser joints[J]. Thin-Walled Structures, 2024, 205: 112393. doi: 10.1016/j.tws.2024.112393
|
| [48] |
Lambiase F, Yanala P B, Leone C, et al. Influence of laser texturing strategy on thermomechanical joining of AA7075 aluminum alloy and PEEK[J]. Composite Structures, 2023, 315: 116974. doi: 10.1016/j.compstruct.2023.116974
|
| [49] |
Leone C, Paoletti A, Babu Yanala P, et al. Improving bonding strength of aluminium-PEEK hybrid metal-polymer joints by two-step laser surface treatment[J]. Optics & Laser Technology, 2024, 170: 110304.
|
| [50] |
Li Rongyao, Feng Aixin, Li Xiao, et al. Study on nanosecond pulsed laser cleaning of FEP coatings on 6061-T6 aluminum alloy surface[J]. Optics & Laser Technology, 2025, 187: 112798.
|
| [51] |
Romoli L, Moroni F, Khan M M A. A study on the influence of surface laser texturing on the adhesive strength of bonded joints in aluminium alloys[J]. CIRP Annals, 2017, 66(1): 237-240. doi: 10.1016/j.cirp.2017.04.123
|
| [52] |
庄越, 刘峰, 储海靖, 等. 交流和纳秒脉冲Ar/H2O介质阻挡放电聚丙烯材料表面亲水改性对比研究[J]. 强激光与粒子束, 2021, 33: 065017
Zhuang Yue, Liu Feng, Chu Haijing, et al. Comparison study of PP hydrophilic surface modification by Ar/H2O dielectric barrier discharge excited by AC and nanosecond pulse voltage[J]. High Power Laser and Particle Beams, 2021, 33: 065017
|
| [53] |
Ijaola A O, Bamidele E A, Akisin C J, et al. Wettability transition for laser textured surfaces: a comprehensive review[J]. Surfaces and Interfaces, 2020, 21: 100802. doi: 10.1016/j.surfin.2020.100802
|
| [54] |
Mao Yingchang, Zhu Yu, Deng Chenman, et al. Analysis of localized corrosion mechanism of 2024 aluminum alloy at a simulated marine splash zone[J]. Engineering Failure Analysis, 2022, 142: 106759. doi: 10.1016/j.engfailanal.2022.106759
|
| [55] |
Jagdheesh R, Hauschwitz P, Mužík J, et al. Non-fluorinated superhydrophobic Al7075 aerospace alloy by ps laser processing[J]. Applied Surface Science, 2019, 493: 287-293. doi: 10.1016/j.apsusc.2019.07.035
|
| [56] |
Khdair A I, Aghakhani S, Thi N H, et al. Molecular dynamics of wettability and condensation on nanostructured surfaces: fundamentals and hybrid wetting[J]. International Communications in Heat and Mass Transfer, 2025, 161: 108516. doi: 10.1016/j.icheatmasstransfer.2024.108516
|
| [57] |
Qin Yongkun, Li Yan, Zhang Dong, et al. Wettability, durability and corrosion properties of slippery laser-textured aluminum alloy surface under water impact[J]. Surface and Coatings Technology, 2020, 394: 125856. doi: 10.1016/j.surfcoat.2020.125856
|
| [58] |
Yan Huangping, Abdul Rashid M R B, Khew S Y, et al. Wettability transition of laser textured brass surfaces inside different mediums[J]. Applied Surface Science, 2018, 427: 369-375. doi: 10.1016/j.apsusc.2017.08.218
|
| [59] |
Boinovich L B, Emelyanenko A M, Modestov A D, et al. Corrosion behavior of superhydrophobic aluminum alloy in concentrated potassium halide solutions: when the specific anion effect is manifested[J]. Corrosion Science, 2016, 112: 517-527. doi: 10.1016/j.corsci.2016.08.019
|
| [60] |
孙文, 褚福强, 李淑昕, 等. 光热超疏水材料防除冰机理及应用研究进展[J]. 表面技术, 2022, 51(12): 39-51
Sun Wen, Chu Fuqiang, Li Shuxin, et al. Research progress on anti-icing mechanisms and applications of photothermal superhydrophobic materials[J]. Surface Technology, 2022, 51(12): 39-51
|
| [61] |
Li Guifeng, Li Xiashuang, Wang Fan, et al. Enhanced mechanical durability and anti-icing properties of TiN surface preparation and 2D code marking through laser nitriding and texturing[J]. Optics & Laser Technology, 2025, 180: 111506.
|
| [62] |
Cui Jing, Wang Yifan, Wang Chengxuan, et al. Anti-icing and weatherability study of superhydrophobic titanium metal matrix composites surface[J]. Colloid and Interface Science Communications, 2024, 58: 100759. doi: 10.1016/j.colcom.2023.100759
|
| [63] |
Zhang Zhen, Liu Denghua, Zhang Yi, et al. Fabrication and droplet impact performance of superhydrophobic Ti6Al4V surface by laser induced plasma micro-machining[J]. Applied Surface Science, 2022, 605: 154661. doi: 10.1016/j.apsusc.2022.154661
|
| [64] |
Cheng Xin, Yang Guang, Wu Jingyi. Spontaneously grown boehmite structures improve pool boiling heat transfer on aluminium surfaces[J]. International Journal of Heat and Mass Transfer, 2022, 192: 122937. doi: 10.1016/j.ijheatmasstransfer.2022.122937
|
| [65] |
Udaya Kumar G, Suresh S, Sujith Kumar C S, et al. A review on the role of laser textured surfaces on boiling heat transfer[J]. Applied Thermal Engineering, 2020, 174: 115274. doi: 10.1016/j.applthermaleng.2020.115274
|
| [66] |
Može M, Zupančič M, Golobič I. Pattern geometry optimization on superbiphilic aluminum surfaces for enhanced pool boiling heat transfer[J]. International Journal of Heat and Mass Transfer, 2020, 161: 120265. doi: 10.1016/j.ijheatmasstransfer.2020.120265
|
| [67] |
Zhang Chong, Zhang Yongkang, Chen Lingyu, et al. Effect of laser micromachining crater-array–multi-grooves on the bonding strength and failure mode of aluminum alloy adhesive joints[J]. Optics & Laser Technology, 2024, 175: 110803.
|
| [68] |
Wan Hailang, Li Shuangshuang, Lin Jianping, et al. Dominant role of laser-generated nano-structures on enhancement of interfacial bonding strength by laser surface modification[J]. Applied Surface Science, 2024, 657: 159708. doi: 10.1016/j.apsusc.2024.159708
|
| [69] |
Tong Wei, Cui Lingling, Qiu Rongxian, et al. Laser textured dimple-patterns to govern the surface wettability of superhydrophobic aluminum plates[J]. Journal of Materials Science & Technology, 2021, 89: 59-67.
|
| [70] |
Zhao Weiran, Xiao Lin, He Xuyao, et al. Moth-eye-inspired texturing surfaces enabled self-cleaning aluminum to achieve photothermal anti-icing[J]. Optics & Laser Technology, 2021, 141: 107115.
|
| [71] |
Xu Shizhen, Tan Liang, Yao Caizhen, et al. Anti-reflective and wetting properties of femtosecond pulsed laser textured Al alloy surfaces[J]. Optik, 2021, 242: 167293. doi: 10.1016/j.ijleo.2021.167293
|
| [72] |
Meng Shaopeng, Yu Yanqing, Zhang Xinbin, et al. Investigations on electrochemical corrosion behavior of 7075 aluminum alloy with femtosecond laser modification[J]. Vacuum, 2024, 221: 112911. doi: 10.1016/j.vacuum.2023.112911
|
| [73] |
徐良, 李康宁, 杨海锋, 等. 微织构特征对铝合金-CFRTP激光焊接头力学性能的影响[J]. 焊接学报, 2024, 45(2): 75-81
Xu Liang, Li Kangning, Yang Haifeng, et al. Effect of microtexturing characteristics on the performance of laser welded aluminum alloy-CFRTP joints[J]. Transactions of the China Welding Institution, 2024, 45(2): 75-81
|
| [74] |
Holder D, Reichle P, Umlauf G, et al. Tunable, permanent and instantly available super-wettability states on metal surfaces by laser texturing and plasma coating[J]. Scientific Reports, 2025, 15: 27595. doi: 10.1038/s41598-025-11750-z
|
| [75] |
Meena Narayana Menon D, Giardino M, Janner D. Tunable pulsewidth nanosecond laser texturing: from environment friendly superhydrophobic to superamphiphobic surfaces[J]. Applied Surface Science, 2023, 610: 155356. doi: 10.1016/j.apsusc.2022.155356
|
| [76] |
Rajab F H, Liu Zhu, Li Lin. Long term superhydrophobic and hybrid superhydrophobic/superhydrophilic surfaces produced by laser surface micro/nano surface structuring[J]. Applied Surface Science, 2019, 466: 808-821. doi: 10.1016/j.apsusc.2018.10.099
|
| [77] |
Zhou Xikang, Xue Wei, Liu Wenwen, et al. Quadri-directionally anisotropic droplets sliding surfaces fabricated by selective laser texturing of aluminum alloy plates[J]. Applied Surface Science, 2020, 509: 145406. doi: 10.1016/j.apsusc.2020.145406
|
| [78] |
缑延强. 无吸收层激光喷丸制备2024-T351铝合金超疏水表面及性能研究[D]. 镇江: 江苏大学, 2024
Gou Yanqiang. Preparation of 2024-T351 aluminum alloy superhydrophobic surface by laser peening without coating and its properties[D]. Zhenjiang: Jiangsu University, 2024
|
| [79] |
Boinovich L B, Modin E B, Sayfutdinova A R, et al. Combination of functional nanoengineering and nanosecond laser texturing for design of superhydrophobic aluminum alloy with exceptional mechanical and chemical properties[J]. ACS Nano, 2017, 11(10): 10113-10123. doi: 10.1021/acsnano.7b04634
|
| [80] |
Lu Yanning, Li Jie, Shi Wentian, et al. Laser-induced biomimetic honeycomb structures synergizing with nanocomposites to build durable copper-based superhydrophobic coatings[J]. Applied Surface Science, 2025, 706: 163592. doi: 10.1016/j.apsusc.2025.163592
|
| [81] |
许骏杰, 康嘉杰, 岳文, 等. 纳秒激光制备Fe基非晶合金涂层表面织构的疏水性研究[J]. 材料导报, 2022, 36: 21120134
Xu Junjie, Kang Jiajie, Yue Wen, et al. Study on hydrophobicity of surface texture on Fe-based amorphous alloy coating treated by nanosecond laser[J]. Materials Reports, 2022, 36: 21120134
|
| [82] |
Li Jing, Fan Fengyu, Zhao Yanhui, et al. Influence of laser surface texturing on a low-adhesion and superhydrophobic aluminium alloy surface[J]. Micro & Nano Letters, 2018, 13(3): 389-392.
|
| [83] |
Samanta A, Huang Wuji, Parveg A S M S, et al. Enabling superhydrophobicity-guided superwicking in metal alloys via a nanosecond laser-based surface treatment method[J]. ACS Applied Materials & Interfaces, 2021, 13(34): 41209-41219.
|
| [84] |
Jiang Shulan, Zhang Ao, Zhan Xiaobin, et al. Surface microtexturing design, laser-etching and adhesive failure of aluminum alloy single-lap-joint: experiment and simulation[J]. Thin-Walled Structures, 2023, 193: 111237. doi: 10.1016/j.tws.2023.111237
|