Volume 37 Issue 12
Nov.  2025
Turn off MathJax
Article Contents
Hu Qingyuan, Peng Xingyu, Zhang Yimo, et al. Simulation of neutron spectrum and time distribution for long counters[J]. High Power Laser and Particle Beams, 2025, 37: 124005. doi: 10.11884/HPLPB202537.250186
Citation: Hu Qingyuan, Peng Xingyu, Zhang Yimo, et al. Simulation of neutron spectrum and time distribution for long counters[J]. High Power Laser and Particle Beams, 2025, 37: 124005. doi: 10.11884/HPLPB202537.250186

Simulation of neutron spectrum and time distribution for long counters

doi: 10.11884/HPLPB202537.250186
  • Received Date: 2025-06-25
  • Accepted Date: 2025-10-15
  • Rev Recd Date: 2025-10-13
  • Available Online: 2025-11-07
  • Publish Date: 2025-11-06
  • Background
    The long counters are widely applied among various types of neutron sources.
    Purpose
    In this work, neutron spectra in the long counters are specifically studied, in order to obtain a better understanding of the influences on the detection efficiency due to the size of moderators.
    Methods
    According to the basic structure of long counters, a simple model is built to systematically simulate the spectrum and time distribution of neutrons entering the proportional counter tube from a pulsed fast neutron source.
    Results
    The calculated results show that the evolution of the neutron spectrum is rapid at first, and becomes slower later. After 31 μs, the neutron spectrum almost no longer changes. The time distribution is different for neutrons of different energy. The lower the energy, the wider the distribution. For the energy of thermal neutrons, the time lasts more than 1 ms. Utilizing the time distribution of different energy, the change of counts of the long counter over time is calculated.
    Conclusions
    Basically, the flux and spectra of neutrons which enter the long counters do not change with the variation of the moderator radius when it exceeds 20 cm. This result can provide a reference for the optimal design of the long counter.
  • loading
  • [1]
    Hanson A O, Mckibben J L. A neutron detector having uniform sensitivity from 10 KeV to 3 MeV[J]. Physical Review, 1947, 72(8): 673-677.
    [2]
    Nobles R A, Day R B, Henkel R L, et al. Response of the long counter[J]. Review of Scientific Instruments, 1954, 25(4): 334-335.
    [3]
    East L V, Walton R B. Polyethylene moderated 3He neutron detectors[J]. Nuclear Instruments and Methods, 1969, 72(2): 161-166. doi: 10.1016/0029-554X(69)90152-9
    [4]
    Slaughter D R, Rueppel D W. Calibration of a depangher long counter from 2 keV to 19 MeV[J]. Nuclear Instruments and Methods, 1977, 145(2): 315-320. doi: 10.1016/0029-554X(77)90427-X
    [5]
    Hu Q Y, Li B J, Zhang D, et al. Optimizing the design of a moderator-based neutron detector for a flat response curve in the 2-14MeV energy range[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2009, 609(2/3): 213-216.
    [6]
    Lacoste V, Gressier V. Experimental characterization of the IRSN long counter for the determination of the neutron fluence reference values at the AMANDE facility[J]. Radiation Measurements, 2010, 45(10): 1254-1257. doi: 10.1016/j.radmeas.2010.07.004
    [7]
    Lacoste V. Design of a new long counter for the determination of the neutron fluence reference values at the IRSN AMANDE facility[J]. Radiation Measurements, 2010, 45(10): 1250-1253. doi: 10.1016/j.radmeas.2010.06.026
    [8]
    Roberts N J, Thomas D J, Lacoste V, et al. Comparison of long counter measurements of monoenergetic and radionuclide source-based neutron fluence[J]. Radiation Measurements, 2010, 45(10): 1151-1153.
    [9]
    Pereira J, Hosmer P, Lorusso G, et al. The neutron long counter NERO for studies of β-delayed neutron emission in the r-process[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2010, 618(1/3): 275-283.
    [10]
    Lawrence D J, Goldsten J O, Peplowski P N, et al. The psyche Gamma-Ray and neutron spectrometer[J]. Space Science Reviews, 2025, 221: 78. doi: 10.1007/s11214-025-01201-6
    [11]
    Leconte P, Belverge D, Bernard D, et al. Accurate measurements of delayed neutron data for reactor applications: methodology and application to 235U(nth, f)[J]. The European Physical Journal A, 2024, 60: 197. doi: 10.1140/epja/s10050-024-01402-7
    [12]
    Hu Q Y, Zhang J H, Zhang D, et al. An improved long counter for neutron fluence measurement with a flat response over a wide energy range from 1 keV to 15 MeV[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2014, 768: 43-45.
    [13]
    Wang Guanbo, Qian Dazhi, Li Junjie, et al. Experimental and theoretical study of long counters on the departure of “point” assumption and scattering background influence[J]. Radiation Measurements, 2015, 82: 146-153. doi: 10.1016/j.radmeas.2015.07.007
    [14]
    Park R J, Byun S H. Optimization of a neutron long counter design by Monte Carlo simulation[J]. Health Physics, 2019, 117(3): 300-305.
    [15]
    Tagziria H, Thomas D J. Calibration and Monte Carlo modelling of neutron Long Counters[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2000, 452(3): 470-483.
    [16]
    Li Yannan, Li Taosheng, Wang Ying, et al. Determination method of high Fluence rate for D-T neutron source with long counter[J]. Radiation Measurements, 2021, 148: 106662. doi: 10.1016/j.radmeas.2021.106662
    [17]
    Smolyar V P, Tarasov V A, Mileva A O, et al. Geant4 simulation of the moderating neutrons spectrum[J]. Radiation Physics and Chemistry, 2023, 212: 111151.
    [18]
    Marshall T O. Attenuation of 14 MeV neutrons in water[J]. Health Physics, 1970, 19: 571-574.
    [19]
    Deiev O S. GEANT 4 simulation of neutron transport and scattering in media[J]. Problems of Atomic Science and Technology, 2013, 85: 236-241.
    [20]
    Lisovska V, Malykhina T, Shpagina V, et al. GEANT4 modeling of energy spectrum of fast neutrons source for the development of research technique of heavy scintillators[J]. East European Journal of Physics, 2019(2): 58-63.
    [21]
    Shin J W, Hong S W, Bak S I, et al. GEANT4 and PHITS simulations of the shielding of neutrons from the 252Cf source[J]. Journal of the Korean Physical Society, 2014, 65(5): 591-598.
    [22]
    Robinson A E. New libraries for simulating neutron scattering in dark matter detector calibrations[J]. Physical Review C, 2014, 89: 032801.
    [23]
    Lemrani R, Robinson M, Kudryavtsev V A, et al. Low-energy neutron propagation in MCNPX and GEANT4[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2006, 560(2): 454-459. doi: 10.1016/j.nima.2005.12.238
    [24]
    Ali F, Surette J, Atanackovic J, et al. Calculation of response parameters for a neutron long counter instrument[J]. Applied Radiation and Isotopes, 2024, 214: 111502. doi: 10.1016/j.apradiso.2024.111502
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)

    Article views (50) PDF downloads(6) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return