| Citation: | Yuan Ye, Guo Cheng, Bao Haoran, et al. Research on micro thrust testing of microwave plasma thruster[J]. High Power Laser and Particle Beams, 2025, 37: 123005. doi: 10.11884/HPLPB202537.250285 |
| [1] |
Abaimov M D, Micci M M, Bilén S G. A 17.8-GHz microwave electrothermal thruster for cubesats and small satellites[C]//Space Propulsion 2016. 2016.
|
| [2] |
Gallucci S E, Micci M M, Bilén S G. Design of a water-propellant 17.8-GHz microwave electrothermal thruster[C]//Presented at the 35th International Electric Propulsion Conference. 2017: 296.
|
| [3] |
Biswas S, Beckerle M, Mcternan J, et al. Thrust Measurements of a 17.8-GHz ammonia microwave electrothermal thruster for small satellites[C]//Presented at the 37th International Electric Propulsion Conference. 2022.
|
| [4] |
Whitehair S, Asmussen J, Nakanishi S. Demonstration of a new electrothermal thruster concept[J]. Applied Physics Letters, 1984, 44(10): 1014-1016. doi: 10.1063/1.94603
|
| [5] |
Clemens D E, Micci M M, Bilén S G, et al. Evaluation and optimization of an 8-GHz microwave electrothermal thruster[C]//46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. 2010: 6520.
|
| [6] |
Brandenburg J E, Kline J, Sullivan D. The microwave electro-thermal (MET) thruster using water vapor propellant[J]. IEEE Transactions on Plasma Science, 2005, 33(2): 776-782. doi: 10.1109/TPS.2005.845252
|
| [7] |
Kamaritis M M E, Biswas S, Bilén S G. 30-GHz proof-of-concept microwave electrothermal thruster[C]//Presented at the 37th International Electric Propulsion Conference. 2022.
|
| [8] |
Wijnen M, Navarro-Cavallé J, Fajardo P. Mechanically amplified milli-newton thrust balance for direct Thrust measurements of electric thrusters for space propulsion[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 3505318.
|
| [9] |
Hey F G, Keller A, Braxmaier C, et al. Development of a highly precise micronewton thrust balance[J]. IEEE Transactions on Plasma Science, 2015, 43(1): 234-239. doi: 10.1109/TPS.2014.2377652
|
| [10] |
Yoshikawa T, Tsukizaki R, Kuninaka H. Calibration methods for the simultaneous measurement of the impulse, mass loss, and average thrust of a pulsed plasma thruster[J]. Review of Scientific Instruments, 2018, 89: 095103. doi: 10.1063/1.5027047
|
| [11] |
Li Y H, Lien W C, Liu S W. Development of a hanging pendulum thrust stand for pulsed plasma thrusters[J]. Acta Astronautica, 2025, 234: 368-386. doi: 10.1016/j.actaastro.2025.05.003
|
| [12] |
Zhang Zhongkai, Zhang Guangchuan, Mao Renfan, et al. A combined measurement method of thrust vector and roll torque for low power Hall-effect thrusters[J]. Acta Astronautica, 2023, 213: 295-306. doi: 10.1016/j.actaastro.2023.09.011
|
| [13] |
黄先科, 毛根旺, 胡伟. 水工质MPT参数设计与性能预估[J]. 机械科学与技术, 2011, 30(10): 1719-1723
Huang Xianke, Mao Genwang, Hu Wei. The parameter design and performance estimation of the water fed microwave plasma thruster (MPT)[J]. Mechanical Science and Technology for Aerospace Engineering, 2011, 30(10): 1719-1723
|
| [14] |
Abaimov M D. Preliminary testing of a 17.8-ghz microwave electrothermal thruster for small spacecraft[D]. State College: The Pennsylvania State University, 2015: 6-9.
|
| [15] |
Yildiz M S, Celik M. Global energy transfer model of a microwave electrothermal thruster operating with helium propellant at 2.45-GHz frequency[J]. IEEE Transactions on Plasma Science, 2017, 45(8): 2314-2322. doi: 10.1109/TPS.2017.2723474
|
| [16] |
Hill P G, Peterson C R. Mechanics and thermodynamics of propulsion[M]. New York: Addison-Wesley Publishing Company, 1965: 7-63.
|
| [17] |
赵承庆, 姜毅. 气体射流动力学[M]. 北京: 北京理工大学出版社, 1998: 48-54
Zhao Chengqing, Jiang Yi. Gas jet dynamics[M]. Beijing: Beijing Institute of Technology Press, 1998: 48-54
|