| Citation: | Dai Jinyu, Zhang Xioahe. High-precision control of nanoparticles using fractional-order vortex laser beams[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202638.250070 |
| [1] |
Stoev I D, Seelbinder B, Erben E, et al. Highly sensitive force measurements in an optically generated, harmonic hydrodynamic trap[J]. eLight, 2021, 1(1): 7. doi: 10.1186/s43593-021-00007-7
|
| [2] |
Ashkin A, Dziedzic J M, Bjorkholm J E, et al. Observation of a single-beam gradient force optical trap for dielectric particles[J]. Optics Letters, 1986, 11(5): 288-290. doi: 10.1364/OL.11.000288
|
| [3] |
Obrzud E, Rainer M, Harutyunyan A, et al. A microphotonic astrocomb[J]. Nature Photonics, 2019, 13(1): 31-35. doi: 10.1038/s41566-018-0309-y
|
| [4] |
童唯扬, 王正岭. 考虑光镊效应的飞秒激光双光子加工线宽[J]. 强激光与粒子束, 2018, 30(3): 034102
Tong Weiyang, Wang Zhengling. Linewidth of femtosecond laser two-photon processing considering optical tweezers[J]. High Power Laser and Particle Beams, 2018, 30(3): 034102
|
| [5] |
Zhu Runlin, Shen Tianci, Gu Zhaoqi, et al. Amphibious hybrid laser tweezers for fluid and solid domains[J]. ACS Nano, 2024, 18(34): 23232-23242. doi: 10.1021/acsnano.4c05970
|
| [6] |
Ji Zhaoqi, Jiang Chunlei, Chen Peng, et al. Radial rotation of cell-pair under beam mode coupling effect of microcavity cascaded single fiber optical tweezers[J]. Nanophotonics, 2025, 14(9): 1405-1414. doi: 10.1515/nanoph-2025-0033
|
| [7] |
Sneh T, Corsetti S, Notaros M, et al. Optical tweezing of microparticles and cells using silicon-photonics-based optical phased arrays[J]. Nature Communications, 2024, 15(1): 8493. doi: 10.1038/s41467-024-52273-x
|
| [8] |
Kabi S, Alinezhad H G, Langari A, et al. Impact of a laser magnetic field on optical trapping[J]. Optica, 2024, 11(9): 1295-1302. doi: 10.1364/OPTICA.528850
|
| [9] |
Peng Miao, Xiao Guangzong, Chen Xinlin, et al. Optical trapping-enhanced probes designed by a deep learning approach[J]. Photonics Research, 2024, 12(5): 959-968. doi: 10.1364/PRJ.517547
|
| [10] |
Lee J, Arita Y, Toyoshima S, et al. Photopolymerization with light fields possessing orbital angular momentum: generation of helical microfibers[J]. ACS Photonics, 2018, 5(10): 4156-4163. doi: 10.1021/acsphotonics.8b00959
|
| [11] |
Terno D R. Two roles of relativistic spin operators[J]. Physical Review A, 2003, 67(1): 014102.
|
| [12] |
Zhang Xiaohe, Rui Guanghao, He Jun, et al. Nonlinear accelerated orbiting motions of optical trapped particles through two-photon absorption[J]. Optics Letters, 2021, 46(1): 110-113. doi: 10.1364/OL.411216
|
| [13] |
Brunet C, Rusch L A. Optical fibers for the transmission of orbital angular momentum modes[J]. Optical Fiber Technology, 2017, 35: 2-7. doi: 10.1016/j.yofte.2016.09.016
|
| [14] |
Toyoda K, Miyamoto K, Aoki N, et al. Using optical vortex to control the chirality of twisted metal nanostructures[J]. Nano Letters, 2012, 12(7): 3645-3649. doi: 10.1021/nl301347j
|
| [15] |
Gu Liangliang, Cao Qian, Zhan Qiwen. Spatiotemporal optical vortex wavepackets with phase singularities embedded in multiple domains [Invited][J]. Chinese Optics Letters, 2023, 21(8): 080003. doi: 10.3788/COL202321.080003
|
| [16] |
Shahabadi V, Abdollahpour D. Dual-plane multiple-trapping by tightly focused petal-like circular Airy beam in an aqueous medium[J]. Journal of Quantitative Spectroscopy & Radiative Transfer, 2021, 272: 107771.
|
| [17] |
Chen Y F, Huang K F, Lai H C, et al. Observation of vector vortex lattices in polarization states of an isotropic microcavity laser[J]. Physical Review Letters, 2003, 90(5): 053904. doi: 10.1103/PhysRevLett.90.053904
|
| [18] |
Berry M V. Optical vortices evolving from helicoidal integer and fractional phase steps[J]. Journal of Optics A: Pure and Applied Optics, 2004, 6(2): 259-268. doi: 10.1088/1464-4258/6/2/018
|
| [19] |
Leach J, Yao E, Padgett M J. Observation of the vortex structure of a non-integer vortex beam[J]. New Journal of Physics, 2004, 6: 71. doi: 10.1088/1367-2630/6/1/071
|
| [20] |
Alperin S N, Siemens M F. Angular momentum of topologically structured darkness[J]. Physical Review Letters, 2017, 119(20): 203902. doi: 10.1103/PhysRevLett.119.203902
|
| [21] |
Tkachenko G, Chen Mingzhou, Dholakia K, et al. Is it possible to create a perfect fractional vortex beam?[J]. Optica, 2017, 4(3): 330-333. doi: 10.1364/OPTICA.4.000330
|
| [22] |
Richards B, Wolf E. Electromagnetic diffraction in optical system. II. Structure of the image field in an aplanatic system[J]. Proceedings of the Royal Society A: Mathematical, Physical & Engineering Sciences, 1959, 253(1274): 358-379.
|
| [23] |
Youngworth K S, Brown T G. Focusing of high numerical aperture cylindrical-vector beams[J]. Optics Express, 2000, 7(2): 77-87. doi: 10.1364/OE.7.000077
|
| [24] |
Gu Bing, Cui Yiping. Nonparaxial and paraxial focusing of azimuthal-variant vector beams[J]. Optics Express, 2012, 20(16): 17684-17694. doi: 10.1364/OE.20.017684
|
| [25] |
Chaumet P C, Nieto-Vesperinas M. Time-averaged total force on a dipolar sphere in an electromagnetic field[J]. Optics Letters, 2000, 25(15): 1065-1067. doi: 10.1364/OL.25.001065
|
| [26] |
Guo Min, Wu Yicong, Hobson C M, et al. Deep learning-based aberration compensation improves contrast and resolution in fluorescence microscopy[J]. Nature Communications, 2025, 16(1): 313. doi: 10.1038/s41467-024-55267-x
|
| [27] |
Sule N, Rice S A, Gray S K, et al. An electrodynamics-Langevin dynamics (ED-LD) approach to simulate metal nanoparticle interactions and motion[J]. Optics Express, 2015, 23(23): 29978-29992. doi: 10.1364/OE.23.029978
|