| Citation: | Shan Yansong, Zhang Jiangmei, Liu Haolin, et al. Research on nuclide identification method based on convolutional recurrent neural network[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202638.250174 |
| [1] |
王晓涛, 周启甫, 陈栋梁. 我国核技术利用发展现状及存在的问题探讨[J]. 中国辐射卫生, 2012, 21(4): 468-469 doi: 10.13491/j.cnki.issn.1004-714x.2012.04.018
Wang Xiaotao, Zhou Qifu, Chen Dongliang. A discussion on the current development status and existing problems of nuclear technology utilization in China[J]. Chinese Journal of Radiological Health, 2012, 21(4): 468-469 doi: 10.13491/j.cnki.issn.1004-714x.2012.04.018
|
| [2] |
Li X, Dong C, Zhang Q, et al. Research and design of a rapid nuclide recognition system[J]. Journal of Instrumentation, 2022, 17: T06008.
|
| [3] |
Dess B W, Cardarelli J, Thomas M J, et al. Automated detection of radioisotopes from an aircraft platform by pattern recognition analysis of gamma-ray spectra[J]. Journal of Environmental Radioactivity, 2018, 192: 654-666. doi: 10.1016/j.jenvrad.2018.02.012
|
| [4] |
岳昌啓, 牛德青. 放射性核素能谱分析方法综述[J]. 兵工自动化, 2023, 42(6): 44-47
Yue Changqi, Niu Deqing. Review of radionuclide energy spectrum analysis method[J]. Ordnance Industry Automation, 2023, 42(6): 44-47
|
| [5] |
卢大宇. 基于Resnet和DCGAN的少样本复杂核素识别研究[D]. 抚州: 东华理工大学, 2024: 13-15
Lu Dayu. Research on complex nuclide identification with few samples based on Resnet and DCGAN[D]. Fuzhou: East China University of Technology, 2024: 13-15
|
| [6] |
He Jianping, Tang Xiaobin, Gong Pin, et al. Rapid radionuclide identification algorithm based on the discrete cosine transform and BP neural network[J]. Annals of Nuclear Energy, 2018, 112: 1-8. doi: 10.1016/j.anucene.2017.09.032
|
| [7] |
贺楠, 吕会议, 王波, 等. 基于人工神经网络的核素识别方法[J]. 兵工自动化, 2022, 41(3): 91-96
He Nan, Lyu Huiyi, Wang Bo, et al. Nuclide identification method based on artificial neural network[J]. Ordnance Industry Automation, 2022, 41(3): 91-96
|
| [8] |
王瑶, 刘志明, 万亚平, 等. 基于长短时记忆神经网络的能谱核素识别方法[J]. 强激光与粒子束, 2020, 32: 106001
Wang Yao, Liu Zhiming, Wan Yaping, et al. Energy spectrum nuclide recognition method based on long short-term memory neural network[J]. High Power Laser and Particle Beams, 2020, 32: 106001
|
| [9] |
唐琪, 周伟, 李治和, 等. 卷积神经网络核素识别算法研究[J]. 核电子学与探测技术, 2021, 41(3): 437-442
Tang Qi, Zhou Wei, Li Zhihe, et al. Research on nuclide identification algorithm of convolutional neural network[J]. Nuclear Electronics & Detection Technology, 2021, 41(3): 437-442
|
| [10] |
杜晓闯, 梁漫春, 黎岢, 等. 基于卷积神经网络的γ放射性核素识别方法[J]. 清华大学学报(自然科学版), 2023, 63(6): 980-986 doi: 10.16511/j.cnki.qhdxxb.2023.22.011
Du Xiaochuang, Liang Manchun, Li Ke, et al. A gamma radionuclide identification method based on convolutional neural networks[J]. Journal of Tsinghua University (Science and Technology), 2023, 63(6): 980-986 doi: 10.16511/j.cnki.qhdxxb.2023.22.011
|
| [11] |
Sun Jiaqian, Niu Deqing, Liang Jie, et al. Rapid nuclide identification algorithm based on self-attention mechanism neural network[J]. Annals of Nuclear Energy, 2024, 207: 110708. doi: 10.1016/j.anucene.2024.110708
|
| [12] |
Daniel G, Ceraudo F, Limousin O, et al. Automatic and real-time identification of radionuclides in gamma-ray spectra: a new method based on convolutional neural network trained with synthetic data set[J]. IEEE Transactions on Nuclear Science, 2020, 67(4): 644-653. doi: 10.1109/TNS.2020.2969703
|
| [13] |
Van Hiep C, Hung D T, Anh N N, et al. Nuclide identification algorithm for the large-size plastic detectors based on artificial neural network[J]. IEEE Transactions on Nuclear Science, 2022, 69(6): 1203-1211. doi: 10.1109/TNS.2022.3173371
|
| [14] |
Kim B J. Comparison of heart failure prediction performance using various machine learning techniques[J]. International Journal of Internet, Broadcasting and Communication, 2024, 16(4): 290-300.
|
| [15] |
Rasdi Rere L M, Fanany M I, Arymurthy A M. Metaheuristic algorithms for convolution neural network[J]. Computational Intelligence and Neuroscience, 2016, 2016: 1537325.
|
| [16] |
赵红伟, 李朋, 程振飞. 基于Faster R-CNN图像处理的光伏并网变电站运行故障检测方法[J]. 电工技术, 2025(1): 27-29,32
Zhao Hongwei, Li Peng, Cheng Zhenfei. Fault detection method for photovoltaic grid connected substations based on faster R-CNN image processing[J]. Electric Engineering, 2025(1): 27-29,32
|
| [17] |
杨进, 李阳, 曾辉, 等. 深度学习在水下目标检测与腐蚀评估中的应用进展[J]. 腐蚀与防护, 2024, 45(9): 57-66
Yang Jin, Li Yang, Zeng Hui, et al. Application advance of deep learning in underwater target detection and corrosion assessment[J]. Corrosion and Protection, 2024, 45(9): 57-66
|
| [18] |
Abbaspour S, Fotouhi F, Sedaghatbaf A, et al. A comparative analysis of hybrid deep learning models for human activity recognition[J]. Sensors, 2020, 20: 5707. doi: 10.3390/s20195707
|
| [19] |
杨祎玥, 伏潜, 万定生. 基于深度循环神经网络的时间序列预测模型[J]. 计算机技术与发展, 2017, 27(3): 35-38,43
Yang Yiyue, Fu Qian, Wan Dingsheng. A prediction model for time series based on deep recurrent neural network[J]. Computer Technology and Development, 2017, 27(3): 35-38,43
|