Turn off MathJax
Article Contents
Tan Xin, Zhao Bianli, Xu Zhiyang, et al. Hundred-watt-level high-power femtosecond fiber laser[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202638.250252
Citation: Tan Xin, Zhao Bianli, Xu Zhiyang, et al. Hundred-watt-level high-power femtosecond fiber laser[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202638.250252

Hundred-watt-level high-power femtosecond fiber laser

doi: 10.11884/HPLPB202638.250252
  • Received Date: 2025-08-05
  • Accepted Date: 2025-11-10
  • Rev Recd Date: 2025-11-22
  • Available Online: 2025-11-29
  • Background
    High-power femtosecond fiber lasers are essential tools for advanced applications in ultrafast science, precision manufacturing, and nonlinear optics. However, achieving hundred-watt-level output while maintaining high beam quality and short pulse duration remains challenging due to nonlinear effects and transverse mode instabilities.
    Purpose
    This work aims to develop a high-power femtosecond fiber laser system based on chirped-pulse amplification (CPA), using rod-type photonic crystal fiber as the gain medium, to achieve hundred-watt-level output with high efficiency and stable beam quality.
    Methods
    The system adopts a rod-type photonic crystal fiber as the main amplifier. Backward pumping combined with double-pass amplification in a single rod fiber is implemented to enhance pump-to-signal conversion efficiency. Nonlinear effects are mitigated by employing a large mode area fiber, short gain length, and proper chirped-pulse management. A double-grating compressor is used for final pulse compression.
    Results
    The amplifier achieves a pump-to-signal conversion efficiency exceeding 60%. The system delivers pulses with a central wavelength of 1033 nm, a repetition rate of 1 MHz, a single-pulse energy of 162 μJ, and a pulse duration of 233 fs. The output beam ellipticity is better than 95%. The overall pump-to-compressed-signal efficiency reaches 54%.
    Conclusions
    The demonstrated system achieves high repetition rate, high average power, and ultrashort pulse duration simultaneously, providing a novel and practical scheme for hundred-watt-level femtosecond fiber lasers. This approach offers new opportunities for applications requiring stable, high-brightness ultrafast sources.
  • loading
  • [1]
    伍圆军, 高妍琦, 华怡林, 等. 大能量全固态再生放大器研究进展[J]. 强激光与粒子束, 2020, 32: 112006 doi: 10.11884/HPLPB202032.200089

    Wu Yuanjun, Gao Yanqi, Hua Yilin, et al. Progress in high energy all-solid-state regenerative amplifier[J]. High Power Laser and Particle Beams, 2020, 32: 112006 doi: 10.11884/HPLPB202032.200089
    [2]
    Müller M, Aleshire C, Klenke A, et al. 10.4 kW coherently combined ultrafast fiber laser[J]. Optics Letters, 2020, 45(11): 3083-3086. doi: 10.1364/OL.392843
    [3]
    Stark H, Buldt J, Müller M, et al. 1 kW, 10 mJ, 120 fs coherently combined fiber CPA laser system[J]. Optics Letters, 2021, 46(5): 969-972. doi: 10.1364/OL.417032
    [4]
    Pedersen M E V, Johansen M M, Olesen A S, et al. 175 W average power from a single-core rod fiber-based chirped-pulse-amplification system[J]. Optics Letters, 2022, 47(19): 5172-5175. doi: 10.1364/OL.471631
    [5]
    王志浩, 彭双喜, 徐浩, 等. 724 W, 0.9 mJ, 227 fs四通道相干合成超快光纤激光系统(特邀)[J]. 光学学报, 2024, 44: 1732017 doi: 10.3788/AOS241138

    Wang Zhihao, Peng Shuangxi, Xu Hao, et al. 724 W, 0.9 mJ, 227 fs four-channel coherently combined ultrafast fiber laser system (invited)[J]. Acta Optica Sinica, 2024, 44: 1732017 doi: 10.3788/AOS241138
    [6]
    Klenke A, Breitkopf S, Kienel M, et al. 530 W, 1.3 mJ, four-channel coherently combined femtosecond fiber chirped-pulse amplification system[J]. Optics Letters, 2013, 38(13): 2283-2285. doi: 10.1364/OL.38.002283
    [7]
    Shi Zhuo, Wang Jingshang, Zhang Yao, et al. Generation of 107 W, 1.07 mJ femtosecond pulses from chirped- and divided-pulse Sagnac Yb-fiber amplifiers by suppression of static mode degradation[J]. Journal of the Optical Society of America B, 2023, 40(9): 2429-2433. doi: 10.1364/JOSAB.499313
    [8]
    张炳涛, 陈月娥, 赵兹罡, 等. 光子晶体光纤的发展和应用[J]. 应用物理, 2019, 9(1): 30-50 doi: 10.12677/APP.2019.91005

    Zhang Bingtao, Chen Yue'e, Zhao Zigang, et al. Development and applications of photonic crystal fibers[J]. Applied Physics, 2019, 9(1): 30-50 doi: 10.12677/APP.2019.91005
    [9]
    王栋梁, 史卓, 王井上, 等. 1MHz, 273W掺镱棒状光纤啁啾脉冲放大系统[J]. 物理学报, 2024, 73: 134204 doi: 10.7498/aps.73.20240300

    Wang Dongliang, Shi Zhuo, Wang Jingshang, et al. 1 MHz, 273 W average power Ytterbium-doped rod-type fiber chirped pulse amplification system[J]. Acta Physica Sinica, 2024, 73: 134204 doi: 10.7498/aps.73.20240300
    [10]
    Liu Danni, Mao Xiaojie, Bi Guojiang, et al. Efficiency enhancing technique for rod fiber picosecond amplifiers with optimal mode field matching[J]. Micromachines, 2023, 14: 450. doi: 10.3390/mi14020450
    [11]
    胡明列, 宋有建, 刘博文, 等. 光子晶体光纤飞秒激光技术研究进展及其前沿应用[J]. 中国激光, 2009, 36(7): 1660-1670 doi: 10.3788/CJL20093607.1660

    Hu Minglie, Song Youjian, Liu Bowen, et al. Development and advanced applications of femtosecond photonic crystal fiber laser technique[J]. Chinese Journal of Lasers, 2009, 36(7): 1660-1670 doi: 10.3788/CJL20093607.1660
    [12]
    Lin W, Li Z, Teng Y, et al. Flexible delivery of broadband, 100 fs mid-infrared pulses in the water-absorption band using hollow-core photonic crystal fiber[J]. Optica, 2025, 12(6): 901-906. doi: 10.1364/OPTICA.558579
    [13]
    胡丽丽, 冯素雅, 王孟, 等. 掺镱大模场光子晶体光纤研究进展(特邀)[J]. 中国激光, 2024, 51: 0106001 doi: 10.3788/CJL231257

    Hu Lili, Feng Suya, Wang Meng, et al. Research progress on Yb-doped large mode field photonic crystal fibers (invited)[J]. Chinese Journal of Lasers, 2024, 51: 0106001 doi: 10.3788/CJL231257
    [14]
    Johansen M M, Laurila M, Maack M D, et al. Frequency resolved transverse mode instability in rod fiber amplifiers[J]. Optics Express, 2013, 21(19): 21847-21856. doi: 10.1364/OE.21.021847
    [15]
    Christensen S L, Johansen M M, Michieletto M, et al. Experimental investigations of seeding mechanisms of TMI in rod fiber amplifier using spatially and temporally resolved imaging[J]. Optics Express, 2020, 28(18): 26690-26705. doi: 10.1364/OE.400520
    [16]
    Lægsgaard J. Static thermo-optic instability in double-pass fiber amplifiers[J]. Optics Express, 2016, 24(12): 13429-13443. doi: 10.1364/OE.24.013429
    [17]
    Lupi J F, Johansen M M, Michieletto M, et al. Static and dynamic mode coupling in a double-pass rod-type fiber amplifier[J]. Optics Letters, 2018, 43(22): 5535-5538. doi: 10.1364/OL.43.005535
    [18]
    Lupi J F, Johansen M M, Michieletto M, et al. High gain in a dual-pass rod-type fiber amplifier[J]. Journal of the Optical Society of America B, 2020, 37(2): 451-458. doi: 10.1364/JOSAB.381433
    [19]
    Zhao Qikai, Gao Guanguang, Cong Zhenhua, et al. High-repetition-rate, 50-µJ-level, 1064-nm, CPA laser system based on a single-stage double-pass Yb-doped rod-type fiber amplifier[J]. Optics Express, 2022, 30(3): 3611-3619. doi: 10.1364/OE.449112
    [20]
    Zhang Yao, Wang Jingshang, Teng Hao, et al. Double-pass pre-chirp managed amplification with high gain and high average power[J]. Optics Letters, 2021, 46(13): 3115-3118. doi: 10.1364/OL.428066
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)

    Article views (20) PDF downloads(2) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return