Turn off MathJax
Article Contents
You Yuning, Lian Ruhui, Cao Kehan, et al. Coupling effect of high-power microwave on space solar arrays[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202638.250257
Citation: You Yuning, Lian Ruhui, Cao Kehan, et al. Coupling effect of high-power microwave on space solar arrays[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202638.250257

Coupling effect of high-power microwave on space solar arrays

doi: 10.11884/HPLPB202638.250257
  • Received Date: 2025-08-13
  • Accepted Date: 2025-11-10
  • Rev Recd Date: 2025-11-20
  • Available Online: 2025-11-27
  • Background
    Space solar arrays, as a crucial part of satellite power systems, are essential for maintaining normal satellite operation. Their large surface area and complex insulation structure make them highly vulnerable to strong external electromagnetic fields. High-power microwaves (HPM), with their wide bandwidth, high power, and rapid action, can readily damage such structures. Therefore, investigating the HPM coupling effects on space solar arrays is of significant importance.
    Purpose
    This study investigates the electric field coupling of space solar cell array samples under high-power microwave exposure.
    Methods
    Using a representative solar cell array structure and layout as a reference, this study constructs a three-dimensional model under high-power microwave irradiation and examines the coupling behavior of the array under varying excitation source parameters, including frequency, polarization direction, incidence angle and so on.
    Results
    (1)Within the frequency range of 2–18  GHz, vertically polarized S-band microwave irradiation is most likely to induce discharge damage to the solar cell array, with the induced electric field at the triple junction in cell string gaps being much higher than that at interconnect gaps. (2) Under microwave irradiation, the solar cell samples exhibit intense transient electric fields; in the case of vertical polarization, the induced field is mainly concentrated in the cell string gaps, near the busbars, and along the cell edges. (3) The steady peak of the induced electric field at the triple junction decreases with increasing microwave incidence angle and increases with higher microwave power density. (4) The rise and fall times of the microwave pulse have no significant effect on the induced electric field magnitude. (5) The electric field in the space around the cell string gap gradually decreases from the gap center toward the outer region.
    Conclusions
    The findings of this study provide valuable references for the electromagnetic protection design of space solar cell arrays.
  • loading
  • [1]
    尉德杰, 朱立颖, 武建文, 等. 激光诱导航天器太阳电池阵放电电弧特性的研究与分析[J]. 电器与能效管理技术, 2024(2): 1-5,78 doi: 10.16628/j.cnki.2095-8188.2024.02.001

    Wei Dejie, Zhu Liying, Wu Jianwen, et al. Research and analysis on laser-induced discharge arc characteristics of spacecraft solar array[J]. Electrical & Energy Management Technology, 2024(2): 1-5,78 doi: 10.16628/j.cnki.2095-8188.2024.02.001
    [2]
    柳青, 李存惠, 秦晓刚, 等. 高压砷化镓太阳电池阵在地球同步轨道环境下的二次放电现象[J]. 高电压技术, 2017, 43(8): 2614-2619 doi: 10.13336/j.1003-6520.hve.20170731023

    Liu Qing, Li Cunhui, Qin Xiaogang, et al. Phenomenon of secondary discharge on the high voltage GaAs solar array in geosynchronous orbit[J]. High Voltage Engineering, 2017, 43(8): 2614-2619 doi: 10.13336/j.1003-6520.hve.20170731023
    [3]
    徐哲, 黄珏. 舰船电子信息装备强电磁脉冲防护技术发展[J]. 舰船电子对抗, 2021, 44(4): 35-38,93 doi: 10.16426/j.cnki.jcdzdk.2021.04.008

    Xu Zhe, Huang Jue. Protection technology development of ship electronic information equipment to strong electromagnetic pulse[J]. Shipboard Electronic Countermeasure, 2021, 44(4): 35-38,93 doi: 10.16426/j.cnki.jcdzdk.2021.04.008
    [4]
    韩曹政, 王武斌, 赵伟, 等. 北斗/GPS导航系统抗高功率微波防护设计[J]. 强激光与粒子束, 2024, 36: 123001 doi: 10.11884/HPLPB202436.240219

    Han Caozheng, Wang Wubin, Zhao Wei, et al. Protection design of BDS/GPS to resist high power microwave[J]. High Power Laser and Particle Beams, 2024, 36: 123001 doi: 10.11884/HPLPB202436.240219
    [5]
    Liu Min, Cai Zongqi, Bian Li'an, et al. Study on the mechanism of high power microwave radiation effect of GaN LNA[C]//10th International Symposium on Microwave, Antenna, Propagation and EMC Technologies for Wireless Communications. 2024: 1-4.
    [6]
    陈卫, 邓潘, 程玉宝. HPM对军用电子设备的损伤机理分析[J]. 中国电子科学研究院学报, 2011, 6(5): 516-519

    Chen Wei, Deng Pan, Cheng Yubao. Analysis of damage mechanism of high power microwave on military electronic equipments[J]. Journal of China Academy of Electronics and Information Technology, 2011, 6(5): 516-519
    [7]
    肖天, 高原, 秦风. 线缆高功率微波耦合特性仿真与试验研究[J]. 强激光与粒子束, 2025, 37: 023002

    Xiao Tian, Gao Yuan, Qin Feng. Simulation and experimental study on high power microwave coupling characteristics of cables[J]. High Power Laser and Particle Beams, 2025, 37: 023002
    [8]
    董昱青, 韩玉兵, 高成. 窄带高功率微波对裸露线缆的耦合特性仿真[J]. 现代应用物理, 2023, 14: 030504 doi: 10.12061/j.issn.2095-6223.2023.030504

    Dong Yuqing, Han Yubing, Gao Cheng. Coupling characteristics of exposed cable irradiated by narrow band high power microwave[J]. Modern Applied Physics, 2023, 14: 030504 doi: 10.12061/j.issn.2095-6223.2023.030504
    [9]
    赵敏, 陈亚洲, 周星, 等. 无人机机载天线高功率微波耦合响应研究[J]. 强激光与粒子束, 2024, 36: 033006 doi: 10.11884/HPLPB202436.230215

    Zhao Min, Chen Yazhou, Zhou Xing, et al. Coupling response of unmanned aerial vehicle antennas under high-power microwave radiation[J]. High Power Laser and Particle Beams, 2024, 36: 033006 doi: 10.11884/HPLPB202436.230215
    [10]
    Jin Wenxuan, Chai Changchun, Liu Yuqian, et al. Microwave damage susceptibility trend of the silicon NPN monolithic composite transistor as a function of structure parameters[J]. High Power Laser and Particle Beams, 2019, 31: 103220.
    [11]
    Cao Baofeng, Zheng Yi, Zhang Xueqin, et al. Electromagnetic coupling effects of spacecraft solar panel[C]//2018 IEEE International Symposium on Electromagnetic Compatibility and 2018 IEEE Asia-Pacific Symposium on Electromagnetic Compatibility (EMC/APEMC). 2018: 857-861.
    [12]
    居培凯. 电磁脉冲对太阳电池阵电池电路毁伤效应研究[D]. 南京: 南京理工大学, 2016: 20-32

    Ju Peikai. Research on the damage effect of electromagnetic pulse on solar cell array circuit[D]. Nanjing: Nanjing University of Science and Technology, 2016: 20-32
    [13]
    王瀚翔. GaAs基太阳能电池HPM效应仿真与机理研究[D]. 西安: 西安电子科技大学, 2021: 21-52

    Wang Hanxiang. Research on the simulation and mechanism of GaAs solar cell caused by HPM effects[D]. Xi'an: Xidian University, 2021: 21-52
    [14]
    Yang Xiong, Zhou Rundong, Song Baipeng, et al. Suppression of dielectric surface flashover induced by strong electromagnetic field at multiple spatial scales based on above/sub-surface discharge development mechanisms[J]. Journal of Physics D: Applied Physics, 2024, 57: 085201. doi: 10.1088/1361-6463/ad0dce
    [15]
    Song Baipeng, Zhou Rundong, Yang Xiong, et al. Surface electrostatic discharge of charged typical space materials induced by strong electromagnetic interference[J]. Journal of Physics D: Applied Physics, 2021, 54: 275002. doi: 10.1088/1361-6463/abf44c
    [16]
    Okumura T, Masui H, Toyoda K, et al. Environmental effects on solar array electrostatic discharge current waveforms and test results[J]. Journal of Spacecraft and Rockets, 2009, 46(3): 697-705. doi: 10.2514/1.41696
    [17]
    Toyoda K, Okumura T, Hosoda S, et al. Degradation of high-voltage solar array due to arcing in plasma environment[J]. Journal of Spacecraft and Rockets, 2005, 42(5): 947-953. doi: 10.2514/1.11602
    [18]
    黄建国, 刘国青, 姜利祥, 等. 高压太阳电池阵诱发的航天器充电及放电机理[J]. 中国科学: 地球科学, 2015, 45(1): 43-51 doi: 10.1360/zd-2015-45-1-43

    Huang Jianguo, Liu Guoqing, Jiang Lixiang, et al. Mechanisms of spacecraft charging and discharging induced by high voltage solar arrays[J]. Scientia Sinica Terrae, 2015, 45(1): 43-51 doi: 10.1360/zd-2015-45-1-43
    [19]
    张璐婕, 刘培国, 盖龙杰, 等. 能量选择强电磁防护技术综述[J]. 安全与电磁兼容, 2025(4): 9-18 doi: 10.3969/j.issn.1005-9776.2025.04.001

    Zhang Lujie, Liu Peiguo, Ge Longjie, et al. Review of the energy-selective high-intensity electromagnetic protection technology[J]. Safety & EMC, 2025(4): 9-18 doi: 10.3969/j.issn.1005-9776.2025.04.001
    [20]
    薛正浩, 徐乐, 芦卓然. 高功率电磁脉冲对太阳能电池的仿真分析[J]. 微波学报, 2020, 36(s1): 355-357

    Xue Zhenghao, Xu Le, Lu Zhuoran. Coupling simulation analysis of high power electromagnetic pulse on solar cell[J]. Journal of Microwaves, 2020, 36(s1): 355-357
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)

    Article views (32) PDF downloads(4) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return