推荐文章More >
针对大型激光装置集成安装过程中的机器人路径规划问题,提出一种简单有效的改进A*算法。该算法较传统A*算法进行了三步改进:第一步是限制可行走方向,避免出现传统A*算法发生穿越障碍物情况;二是将其启发函数优化为加权曼哈顿距离函数,加速向x方向或者y方向扩展节点,改善限制可行走方向带来的遍历节点数激增现象;三是引入转弯惩罚项,减少路径规划过程中的转弯次数,提高路径规划搜索效率和质量。在不同大小的栅格地图中验证三步改进A*算法的性能,并与传统A*算法进行比较。实验结果表明,简单地图中,三步改进A*算法遍历节点数略高于传统A*算法,转弯次数与传统A*算法相当,但路径避障性能明显优于传统A*算法,更有利于机器人安全行走。复杂地图中,综合考虑遍历节点数、转弯次数和路径长度的优先关系后,可以实现调节三步改进A*算法参数至路径规划结果最优。
基于多群截面的确定论计算方法一直都是反应堆工程设计的重要方法,多群截面精度直接影响着反应堆物理计算的精度。为了产生快堆高精度的截面数据,华北电力大学开发了高精度截面处理程序MGGC2.0,对该程序进行了基准验证和确认。基于ENDF/B-Ⅶ.1库计算无限大均匀混合介质UO2、MOX、U-TRU-Zr燃料,将MGGC2.0与MCNP产生的宏观截面对比验证,验证了程序产生多群截面的精度,超细群宏观多群总截面与MCNP的参考解的相对偏差基本在5%以内。然后对俄罗斯快堆实验BFS97-1进行了计算,提出了针对多种燃料排布形式的燃料少群截面均匀化方法,利用MGGC2.0的碰撞概率法计算了燃料的少群截面数据,利用DIF3D程序进行堆芯计算,同时还对比了不同截面均匀化方法的结果。研究结果表明:对于BFS97-1,如果直接采用临界搜索产生的截面,DIF3D计算的有效增殖因数(keff)结果与MCNP计算的keff的绝对偏差为2.541×10−2,通过改进燃料轴向不均匀计算方法,使得偏差降到了5.0×10−4以下。针对BFS97-1、BFS97-2、BFS97-5和BFS97-6的计算结果与MCNP结果的偏差都在3.0×10−3以内,验证了程序产生多群和少群截面具有较高精度,可以满足工程设计要求。
针对前表面高反、后表面增透的取样光学元件的性能测试需求,基于光腔衰荡大口径光学元件反射率均匀性测试实验装置,分别从反射膜面入射和增透膜面入射,扫描测量得到该取样光学元件的反射率分布及光学损耗、缺陷高分辨扫描成像;并进一步通过对比分析缺陷分布图,实现取样光学元件反射膜、透射膜以及基片缺陷分类;另外通过建立双通道光腔衰荡实验装置,获取增透膜的剩余反射率分布以及透射膜缺陷类型;实现了大口径取样光学元件光谱和缺陷特性的准确测量。
为有效解决驱动粒子反应需要的强电磁脉冲功率问题,在压电陶瓷堆脉冲功率源基础上研究了一种新型的基于氢等离子体加载和波粒共振机制的脉冲功率同步放大技术,其放大机理为:一是氢分子成键轨道比反键轨道能量低,在电离过程中会释放内能促进脉冲功率驱动的电离过程高效发生;二是氢原子电离后,电磁场与电离后形成的电子发生波粒共振,电子能量被同步转换为电磁场能量。波粒共振放大后获得更强的电磁脉冲能量,其作用到螺旋电极上可形成球形电磁场,并具有极高的加速梯度,可对氢原子高效电离后产生的大量质子进行近距加速。本文通过实验测试和仿真分析对上述理论进行了有效证明,该项研究有望为强电磁脉冲驱动的小型化、低成本质子发生器奠定基础。
介绍了一种小型化高通量中子源系统的工作原理、组成与构型,系统性地介绍了开发该型中子源系统所需的压电脉冲功率源技术、核反应设计技术、球形电磁场发生技术、粒子近距加速技术、粒子极化与共振对撞技术。研发了完整的中子源实物系统并对其进行能谱和通量测试,实验中观测到了预期的物理现象,通过在线与离线中子测试方法证明了核反应的发生,测试结果显示直径2 cm、长度为4 cm的新式微型中子源的中子辐射通量达到了1010 n/(cm2·s)水平,属于强中子辐射源。
北京大学拍瓦激光质子加速器针对肿瘤治疗需求,开发激光质子放疗系统,实现质子放射肿瘤治疗。其水平束流线和垂直束流线的公共收集段主要由三台超导螺线管(S1-S3)组成。在降温过程和励磁过程中螺线管内会产生较大的应力,此外超导螺线管采用快脉冲的方式运行,励磁过程中的交流损耗会对螺线管励磁速度和稳定运行有重要影响。以结构最复杂、中心场强为7.8 T、直径120 mm的螺线管S1为研究对象,使用COMSOL Multiphysics软件对超导螺线管进行了多场条件下的应力分析,同时对其由于快速变化的电流所产生的交流损耗进行了模拟计算。随后开展了相应的实验研究,获得了应变随温度变化,给出了电流、磁场、应变三者对应关系的变化曲线。在实验过程中,磁场和应变的测量值与电流的变化之间存在显著的正相关性,应变值小于线圈所受应力的最大限值,验证了超导螺线管设计的合理性。
详细研究了在走离补偿及非走离补偿两种方式下,钛宝石(Ti: sapphire)激光倍频泵浦的非共线超宽带简并光参量放大中二次谐波寄生效应的影响。研究表明,在非走离补偿方式下,通过适当增加泵浦光与信号光的非共线角,在确保信号光宽光谱放大的同时,可以有效降低二次谐波寄生效应对信号光输出光谱的影响。获得了不同泵浦光光谱带宽下,简并光参量放大的信号光输出光谱及输出通量演化规律,明确了在给定信号光输出光谱带宽下对泵浦光光谱带宽的要求。研究结果为基于简并光参量放大的超宽带高时域对比度飞秒种子光产生提供设计依据。
为方便粒子加速器用固态功率源设备在线更换维护,需要功率合成器具备在线可解耦的功能。腔式合成器由于其较高的功率容量成为功率合成的优选方案,但目前并未实现输入耦合度在线可调。为此,设计了一种带有可旋转解耦系统的650 MHz八合一腔式功率合成器。将非接触开路式扼流槽设置在射频输入端口,耦合环与腔体分离,实现磁耦合环可在线旋转调节,根据固态功率源工作状态来在线调节输入耦合度,以此来满足热插拔及调整合成效率的目的。仿真结果表明该合成器单级合成效率高,功率损耗小,且各输入端到输出端的幅度传输具有很好的一致性,最大偏差在0.25 dB以内。通过在线调节耦合度实现输入端口射频隔离,从而实现功放模块在线热插拔更换,极大的改善了功放模块的在线可维护性及灵活性。
高功率微波(HPM)系统集成过程中,微波源与传输发射分系统的对接状态直接影响系统性能,不良的对接状态可能引发射频击穿,导致系统输出功率降低。因此,诊断系统的对接状态具有重要工程价值。为此,开展了非接触式高功率微波传输技术研究,并针对采用圆锥喇叭作为馈源的Ku波段GW级HPM系统,提出了一种馈源喇叭注入功率测量技术。基于仿真设计,完成该测量技术的关键组件研制,并开展了小信号测试和功率容量考核试验。试验结果表明,在(15±0.15) GHz范围内,该测量组件的反射系数小于−26 dB,耦合系数为(−0.31±0.07) dB,功率容量超过900 MW。实验和仿真结果证明,提出的测量技术具有耦合系数稳定、测试误差小等性能,能够有效地测量HPM源注入馈源喇叭的微波功率,并诊断HPM系统的对接状态。
对多组磁芯进行并联复位时,磁芯各次励磁工作点不一致,会导致装置运行状态不够稳定。将原高功率猝发多脉冲直线感应加速器感应腔磁芯脉冲并联复位系统改造为直流复位系统,该直流复位系统利用继电器对每个感应腔的复位电路进行单独控制,在使用可以周期性重复输出的恒流源的条件下,实现了对多组磁芯一对一的直流复位,解决了脉冲并联复位引起的磁芯各次励磁工作点不一致的问题。工程实施中,系统通过两套恒流源与8套切换控制箱协同工作对94组感应加速腔磁芯进行复位,显著降低了系统复杂度与维护成本。实际应用验证表明,改进后加速器的多脉冲稳定性显著提升,加速器束心位置抖动由1.3 mm降至1 mm以下。介绍了猝发多脉冲感应腔磁芯直流复位系统的工程设计思路、关键器件以及最终的工程布局和运行效果。
针对浑浊水体中光条纹中心点提取精度低、抗干扰能力弱的问题,提出一种改进的内部推进算法,旨在提升复杂环境下光条纹中心点提取的准确性和鲁棒性。首先利用中值滤波预处理图像以抑制噪声,结合八邻域法快速定位光条纹起始点;随后引入灰度邻域属性法,动态估算当前行的光条纹像素宽度,并基于此范围应用最大类间方差法自适应确定二值化阈值,有效减少背景干扰;最后在约束的像素宽度范围内采用灰度重心法计算初始中心点,并以此为基础向上、下方向推进搜索光条纹中心点。实验在多种浑浊水体环境及不同结构光形态下进行对比测试。结果表明,与原始内部推进算法相比,本文方法均方根误差降低了13.33%,算法运行速度较Steger算法提升了69.07%,实现了精度与速度的平衡。
,残余气体电离型束流剖面探测器(IPM)可以实时提供高流强质子加速器调试和稳定运行所需的关键束流分布信息, 中国散裂中子源(CSNS)直线加速器IPM装置采用紧凑型结构设计,通过离子模式收集并由光学成像系统实现束流横向一维分布测量。电极板开孔处的蜂窝网格结构阻挡部分离子或电子进入微通道板,造成成像阴影并引入束流分布畸变,利用离线算法进行校正。利用偏微分修复和机器学习算法对CSNS直线加速器IPM蜂窝网格造成的成像阴影和束流分布畸变进行了校正处理,采用无监督机器学习方法DIP校正后的束流尺寸与理论预期偏差低于10%并保持较好信噪比。
为提升绝缘材料真空沿面耐压,提出了一种由微槽与分子自组装膜结合的复合结构,并采用激光微刻蚀、超声清洗、分子自组装等方法,在氧化铝真空绝缘子表面制备了该表面复合结构。作为对比,同时制备了仅有微槽或分子自组装膜的绝缘子。二次电子发射系数测试结果表明,表面微槽结构和表面分子自组装膜都可以降低绝缘子的二次电子发射系数,而他们相结合形成的复合结构能够进一步降低绝缘子的二次电子发射系数;相应的,闪络电压测试结果表明表面微槽结构和表面分子自组装膜都可以提升绝缘子的真空沿面闪络电压,而两者相结合形成的复合结构能够进一步提升闪络电压。该结果证明了复合结构中分子自组装膜和微槽能够对真空沿面闪络的发展进行双重抑制。
为了提升基于模拟数字转换(ADC)技术的波形数字化读出系统的性能,提出了一种多通道间失配误差估计校准方法。采用两片国产高速ADC组成并行交替采样(TIADC)系统,采用粒子群算法(PSO)结合梯度下降法(GD)来完成系统通道失配误差估计;利用滤波器方程组和Kaiser窗截断处理得到补偿校准滤波器系数值。该补偿方法可以直接在以现场可编程门阵列(FPGA)为处理芯片的TIADC硬件平台上实现,达成宽带并行交替采样信号的在线重构。实验结果表明,该算法可以有效实现通道失配误差的补偿校准,在Vivado开发软件平台行为级仿真条件下使无杂散动态范围(SFDR)由32.1 dBFS提升到53.1 dBFS,在硬件系统测试时使SFDR提升到60.8 dBFS,且该信号重构方法易在硬件系统实现,不受通道数目的限制。
针对高功率微波系统宽频带和波束扫描需求,提出并设计了一种基于可变电容的X波段高功率宽频带波束扫描反射阵列天线。天线采用线极化喇叭馈源和三明治介质埋藏式贴片单元,其中贴片部分为嵌套式双谐振结构集成可变电容,同步拓宽相位调节范围(360°)与工作带宽。通过消除单元突变结构并采用三明治介质层,有效抑制了三相点产生,使功率容量提升至5 MW(0.1 MPa气压SF6环境)。调节可变电容容值可实现8.55~9.65 GHz频段内12%相对调谐带宽。基于11×11矩形栅格的反射阵仿真表明:242 mm口径阵列天线最大增益25.12 dBi,口径效率54.39%,全频带支持0°~20°波束扫描。相较于现有技术,该设计在调谐带宽(12%)和功率容量(5 MW)方面具有优势,为高功率微波系统的宽频带波束控制提供了有效途径。
战斗力指数的定量化研究是军队实现信息化建设必须解决的难题。针对战斗力指数研究存在定量研究较少、方法精度较低、鲁棒性不强等问题,以及战斗力指数函数本身为复杂规则主导、多变量数学模型、影响因素强耦合等难以拟合的限制,受模糊逻辑理论中对规则的数学分析方法启发,提出了一种基于局部逼近的战斗力指数函数拟合方法,并结合神经网络强大的自学习和自推导能力,构建了相应的基于径向基神经网络(RBF)的定量计算模型。仿真对比实验表明,该方法比利用全局逼近的方法误差率低约2%和6%,且表现出更强的鲁棒性。该计算方法具有较强的实用性,而且具备向其他军事领域迁移的可能性,具备良好的工程应用前景。
相较于单一波段目标检测技术,多光谱目标检测技术通过捕获物体在多个不同波长的光谱波段下的反射或辐射信息,极大地提高目标检测的准确性和应对复杂环境的鲁棒性。在遥感、农业检测、环境保护、工业生产以及国防安全等领域有着广泛的应用。然而,目前多光谱目标检测领域仍面临着严峻挑战:多样化的高质量数据集以及高效目标检测算法的缺乏,严重制约了该技术的进一步发展和应用。鉴于此,综合阐释了多光谱目标检测数据集的制作方法以及多光谱目标检测算法的重要进展。首先,系统分析了多光谱数据集的构建过程,包括数据采集,预处理和数据标注。其次,全面分析了目标检测算法发展的历史脉络,这些算法涵盖了基于传统特征提取技术的目标检测算法、深度学习方法以及其改进版本。此外,着重强调了算法开发者为提升多光谱目标检测性能在特征融合、模型架构和子网络方面所作的关键改进。最后,探讨了多光谱目标检测技术未来的发展方向,期望为研究人员指明潜在的研究热点和应用领域,促成多光谱目标检测技术在实际场景中更广泛的应用,提升其社会价值。
热扩散系数是大能量、高功率激光系统中光学元件的重要参数,关系到元件的抗激光损伤性能,但现有热扩散系数测量方法在多维热传导情况下的测量结果误差较大,且热扩散长度是热扩散系数测量的基础,因此采用有限元法仿真了热源连续加热下的二维热传导并总结了热扩散长度与热扩散系数及加热时间之间的关系规律,据此提出了热源连续加热下测量二维热扩散长度的模型与方法。首先采用有限元分析建立模型仿真了一维热传导情况下的热扩散长度与热扩散系数的关系式并与数值解析表达式比较,二者符合较好,验证了使用连续热源与热扩散长度求解热扩散系数的可行性;之后扩展到二维热扩散情况,并讨论了热损失、样品厚度和热源加载时间对结果的影响;最后给出了实际测量方案,并给出提升测量精度措施。该工作为方便准确地测量材料或元件的热扩散长度提供思路,对制备高功率、大能量激光系统元件具有重要意义。
当光电晶体管偏置在5 V下,辐照前,其暗电流约为58 nA,对365 nm紫外光的响应度约为31 A/W;器件经过10 MeV电子束辐照后,暗电流的数量级下降到10−11 A,响应度下降到原来的1/8左右。辐照后,器件的响应度受偏置电压的影响明显,随着偏置电压的减小而下降,当光电晶体管偏置在3 V下,响应度下降到2.25 A/W。电子束辐照还会影响紫外探测器的开关响应,使响应的总时间变长。结合光电晶体管工作时的电路模型,电子束辐照后引起光产生电流减小、晶体管增益下降和串联电阻增大是引起光电探测器紫外响应性能退化的主要原因。
随着高能量密度(HED)物质诊断需求的日益增长,X射线干涉成像技术在该领域得到了广泛关注和应用。主要综述了X射线干涉成像技术与系统的国内外最新进展,介绍了基于Talbot和Talbot-Lau干涉的X射线光栅成像原理和能力,Talbot干涉和Talbot-Lau干涉是通过利用具有周期性结构的光栅,对X射线的相位、吸收和散射特性进行高精度测量,从而实现对样品内部结构的无损检测与成像。总结了该技术在高能量密度物质诊断实验中的应用,介绍了Talbot干涉分析(TIA)代码,并依靠TIA程序与Flash流体力学代码结合进行了初步模拟,成功获取了Flash模型中的吸收、相位和暗场三种信息,最后总结和展望了X射线Talbot-Lau干涉诊断技术在高能量密度等离子体实验中的应用。
介绍了基于百千焦激光装置开展的一系列激光间接驱动双金属壳靶内爆出中子实验。双金属壳靶的设计来源于体点火方案,该方案通过解耦辐射烧蚀与内爆压缩过程,从而提高了内爆的鲁棒性。然而,由于双金属壳靶制备难度较大,首次实验中的中子产额远低于模拟预期。为解决这一问题,提出了两项关键改进措施:一是优化外壳接缝设计,降低流体力学不稳定性因素的影响,提高内外壳的碰撞效率以及内球的内爆效率;二是提高黑腔靶丸的耦合效率,增强激光能量的有效传递。通过这些改进,靶丸的压缩性能和内爆效率得到显著提升,最终实现了中子产额从
为了解激光焦斑尺寸对极紫外转换效率影响及产生影响的物理机制,通过理论解析的方式提出了激光烧蚀平面靶产生冕区等离子体的二维瞬态膨胀模型来研究激光焦斑对极紫外光转换效率的影响。发现在激光光强7.45×1010 W/cm2、半高全宽5 ns、波长
在高功率微波辐射领域中,模式变换器加喇叭天线是实现旋转轴对称模定向辐射的常用技术,但模式变换器与喇叭天线的分离设计往往会使得天线轴向和口面尺寸较大。为了满足实际应用场景对天线小型化的需求,提出了一种模式控制与辐射一体化的阶梯型双半圆波导辐射天线。该天线由圆波导TM01模输入,通过插板将圆波导TM01模分成两路相位相反的半圆波导TE11模,之后再连接两个不对称的阶梯型半圆波导辐射器实现微波辐射。功分器采用了渐变圆波导进行匹配,同时采用大半径的内导体以提高功率容量。双半圆波导辐射器利用模式匹配法结合粒子群优化算法进行相位调节和模式控制。通过分区域的模式控制和辐射一体化设计,在辐射口面处达到更加均匀的同相电场分布,实现定向辐射,从而缩短了天线长度、降低了口面大小。优化设计了一个中心频率为2.85 GHz的天线模型,天线尺寸为1.18λ×1.18λ × 2.42λ。仿真结果表明:在2.75~2.96 GHz内天线回波损耗大于15 dB,在2.71~3 GHz内实际增益大于15.5 dBi,中心频点的实际增益为16.14 dBi,真空功率容量为906 MW。相比于传统的模式转换器加喇叭天线的技术路线,该天线具有高功率容量、小型化的特点。
为探究电子设备在强电磁场环境中出现重启、关机现象的根本原因,以某型直流稳定电源为受试对象,观察在强场连续波电磁辐射作用下受试电源表现出的敏感现象。选择电压相对变化量作为效应参量,并描述效应参量随干扰场强的变化规律。辐照试验在GTEM室中进行,干扰信号频段为80~
深圳中能高重复频率X射线自由电子激光(S3FEL)的预研项目中的束流测试平台,将用于攻克高重复频率自由电子激光中的多项重大关键技术。对S3FEL束流测试平台中注入段废束桶束窗进行结构设计,结合电子束流参数设计了一种钎焊水冷铜窗。通过有限元分析方法对束窗进行热结构计算,分析了不同冷却通道和冷却流速下的温度、应力和变形。综合考虑冷却效果、流致振动和经济效益因素,最终选取了M型水冷通道和流速为1 m/s的束窗设计。并对该束窗处的真空分布进行计算,结果满足了设计要求,验证了设计的合理性,能够确保装置稳定可靠运行。
针对一款BCD工艺栅极驱动器,采用环栅结构进行总剂量效应加固。通过60Co γ辐照试验,对比了加固和非加固器件电学参数随剂量变化情况。结果表明,总剂量辐射会导致器件的输出电压与电流特性发生退化,出现转换电压下降与输出电流上升的现象,同时发现总剂量辐射对输出电阻几乎无影响。对比两种栅极驱动器辐照前后的测试结果,证明环栅加固方法对抑制总剂量辐射引起的边缘漏电有一定的效果,但辐照总剂量达到500 krad(Si)时,加固器件发生功能失效。通过仿真模拟各级晶体管辐射损伤对器件最终输出结果的影响,确定初级施密特反相器内阈值电压漂移影响转换电压,而末级晶体管阈值电压漂移导致输出高电平下降。
基于电磁能装备的电爆破在基坑工程中有巨大应用前景。提出了基于脉冲电源-电爆炸负载阵列的协同破岩技术,通过多应力波叠加实现大体积硬岩可控电爆破。分析了电爆炸过程中过电压产生机理以及多阵列协同过程中的过电压传递特性,提出了强流开关的过电压抑制方法。分析了单电爆炸负载与阵列协同破岩的作用效果,双电爆炸负载阵列单位体积破岩能耗为单电爆炸负载的38%,表明电爆炸负载阵列协同可有效实现大体积硬岩的可控电爆破。
指标高、结构紧凑、稳定性好的固态高压脉冲开关对脉冲功率技术的进步具有重要意义。提出基于光电导开关(PCSS)和电涌抑制晶闸管(TSS)阵列的高压纳秒开关技术路线,采用便于实现高压隔离的PCSS作为TSS阵列的触发单元,研制了一种新型高压纳秒开关模块(PTTSSM)。研制的20 kV开关模块输出峰值电流23.7 A,脉冲宽度122.1 ns,上升时间和下降时间分别为55.9 ns和128.3 ns,尺寸为60 mm×60 mm×40 mm;100 kV模块输出峰值电压60~100 kV可调、最大输出峰值电流356 A,脉宽1.308 μs,上升和下降时间分别是160.4 ns和2.454 μs,尺寸为150 mm×100 mm×50 mm,均能够长时间稳定工作。基于新型高压纳秒开关模块的脉冲电源在有机废水处理实验中成功产生大量稳定低温等离子体,有效降解有机物,验证了开关模块驱动产生等离子体的可行性和有效性。
Constructing a photoconductive semiconductor switch (PCSS)-metal coil structure, we discovered a new phenomenon of electromagnetic oscillation in vanadium-compensation semi-insulating (VCSI) PCSS. Here the PCSS responds to laser pulse and high-voltage signal while the metal coil generates an oscillating voltage pulse envelope signal. The generation of this oscillating signal is not related to the input bias voltage of the PCSS, the pulse circuit components, or the electrode structure of the PCSS, rather it is related to the output characteristic of the PCSS. This physical phenomenon can be explained using the current surge model in photoconducting antenna. Preparing ohmic contact electrode on the silicon carbide material forms the PCSS, which generates a large number of photogenerated carriers when ultra-fast laser pulses irradiate the surface of the material and Simultaneously applies a bias voltage signal between the electrode. At this time inside the PCSS the electric field causes the transient current, radiating electromagnetic wave to the metal coil to generate oscillating signal.
闪光照相技术可以对快速物理过程进行诊断,但由于是瞬时照相,获得的投影数量稀少。考虑视角典型受限(即一个视角)的情况下,CT图像重建不确定度量化方法的研究。目前的单视角CT图像重建不确定度量化方法通常假设在线性光程方程中含有高斯噪声的模型,但这种物理模型过于简化。从朗博比尔定律(Lambert-Beer’s law)出发,构建了关于透射率的指数衰减方程及其高斯噪声项,得到更合理的非线性图像重建模型,推导得到相应的非线性后验概率密度函数,然后利用RTO算法以及Gibbs算法对该后验概率进行抽样,通过统计抽样样本得到图像重建的平均值及其不确定度。为了验证新方法的有效性,给出了模拟数据,并与基于光程方程的线性图像重建结果进行了对比,结果表明基于透射率方程的非线性图像重建方法具有更好的不确定度估计潜力。
采用磁控溅射技术控制不同的铝靶电流在 聚对苯二甲酸乙二醇酯 (PET)的表面制备双面铝薄膜。利用扫描电子显微镜(SEM)和原子力显微镜(AFM)观察铝薄膜的微观形貌,使用X射线衍射仪(XRD)对铝薄膜进行物相分析,利用划格法检测铝薄膜和PET的结合情况,利用紫外-可见分光光度计检测铝薄膜的挡光性,采用手持式核辐射探测器检测α和β粒子射线粒子在铝薄膜中的透过率。结果表明:铝薄膜表面光滑平整,具有金属光泽,Al晶粒均匀致密。铝薄膜无孔洞、裂纹等缺陷;随着Al靶电流增加,Al晶粒尺寸、铝薄膜厚度及沉积速率均增大,铝薄膜粗糙度先降低后增大。铝薄膜的挡光性先提高后降低,α、β粒子的平均透过率均逐渐降低;当铝靶电流为2.0 A时,铝薄膜的粗糙度最小,为2.49 nm,光透过率最低在0.025%左右,α、β粒子的平均透过率最高,分别为581.7 CPS、547.2 CPS。
放射性核素已在核医疗、核安保及无损检测等领域中广泛应用,而对其准确识别是放射性核素定性检测的基础。在便携式核素识别仪中,基于传统能谱分析方法存在延迟高、识别率低等不足。提出一种基于核脉冲峰值序列的核素识别轻量化神经网络模型及其FPGA硬件加速方法,通过引入深度可分离卷积和倒残差模块,并使用全局平均池化替代传统全连接层,构建了一种轻量化、高效的神经网络模型。针对网络训练数据集,通过蒙特卡罗工具包Geant4构建NaI(Tl)探测器模型,获取模拟能谱,再由核脉冲信号模拟仿真器根据能谱产生核脉冲信号序列,构建了16种核脉冲信号数据。最后,将训练好的模型通过量化、融合与并行计算等优化方法部署到PYNQ-Z2异构芯片,实现加速。实验结果表明,模型识别精度可达98.3%,相较传统卷积神经网络模型提高了13.2%,参数量仅为2 128。FPGA优化加速后单次识别耗时0.273 ms,功耗为1.94 W。
对被动遥感探测高层大气风场所使用的高斯光谱线型、洛伦兹线型与佛克托线型三种线型的气辉(极光)光源引入涡旋光因子后,从理论上导出了三种线型涡旋光表达式,模拟得到三种气辉(极光)涡旋光线型的调制图像,三种线型随拓扑荷数的变化出现不同程度的消光:高斯型涡旋光绕轴旋进一周相位改变2πl,整体呈螺旋形,中心消光部分及相位随拓扑荷数l增加而增大;洛伦兹型涡旋光以横轴分布方向为主要的消光方向。随着l增加光强减弱,以间断式进行中心消光,具有螺旋空间相位结构;佛克托型涡旋光的花样对称分布于横向与纵向两侧,顶部呈“V”型沿-z方向消光。给出三种线型涡旋光的干涉强度与光程差、拓扑荷数的关系式,模拟得到三种线型涡旋光的干涉条纹的3D图,发现不同拓扑荷数下空间光谱强度产生不同的叉形结构:随着涡旋相位的改变,原有空间分布发生变化,整体从光强最大处开始向两侧延伸并挤压,分数拓扑荷数下涡旋相位挤压和错位影响更大。实验结果发现高斯型涡旋光的亮环数目与拓扑荷数l相同,拓扑荷数l每增加1,则总拓扑相位就会增加2π,束腰半径也随之增加。
为了研究激光聚变内爆中出现的流体力学不稳定性问题,需要具备大视场、高分辨率的X射线诊断技术。菲涅耳波带片(FZP)是一种圆形非周期光栅结构,可实现X射线的高空间分辨率成像。开展了基于衍射成像的高分辨X射线诊断技术仿真研究,展示了FZP对于流体力学不稳定性问题的应用前景。基于衍射理论建立FZP理论模型,根据诊断实验环境,设计了工作能点为8.04 keV下的FZP结构参数。基于光学仿真模型,对FZP成像色差问题进行模拟,给出了空间分辨与光谱带宽的关系,仿真结果表明,光源带宽小于0.2 keV,FZP的分辨率优于3 μm。通过网格背光成像仿真表明,FZP在0.8 mm视场内,可以实现优于3 μm的分辨。
横向尾场导致的束流崩溃效应是限制加速器向强流小型化发展的主要因素。介质金属盘片混合加速结构是具有小型化高束流功率特性的新型加速结构,但其结构较为复杂,导致装配和调谐困难。通过开展介质金属盘片混合加速结构研究,明确介质材料对腔体性能的影响,从而优化结构以解决装配和调谐的问题。该结构优化后可以大幅度降低横向尾场导致的束流崩溃,增大束流功率。基于优化后的结构,设计一只工作频率为S波段
针对紧凑型X射线光源的一体化储存环注入系统这一核心问题开展研究。利用三维电磁场仿真软件CST与束流动力学模拟软件ELEGANT,重点对注入系统中的关键元件−扰动器进行多参数优化设计。研究了电子束流在半整数注入过程中的相空间演化规律,优化了注入元件的结构参数,针对紧凑型储存环优化了注入方案,计算结果显示扰动器相对于注入点的最佳摆放位置是150°~210°,电子束流注入位置相对于平衡轨道为30 mm,扰动器停止工作后电子振幅最小可缩小至3.4 mm。最后分析了紧凑型储存环采用多次多圈注入模式实现束流注入的可行性,计算结果显示扰动器工作频率为3 MHz时可获得最大注入效率。
运用飞秒激光逐面直写技术,结合光束整形方法,成功实现了一步直写大面积光栅栅面。基于该方法在20/400 μm双包层光纤中成功制备高低反光栅对,并用于搭建全光纤振荡器。在
W泵浦功率下实现
W近单模激光输出,光-光转换效率达73.47%,光束质量因子M2=1.46,输出光谱3-dB带宽为3 nm且无受激拉曼散射峰。研究结果表明,飞秒激光直写技术在高功率光栅制备中同时具备工艺灵活性与热管理优势,为全光纤激光器性能提升提供关键技术路径。