留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

取消次级中子源对压水堆氚源项的影响分析

王奇

王奇. 取消次级中子源对压水堆氚源项的影响分析[J]. 强激光与粒子束, 2023, 35: 116004. doi: 10.11884/HPLPB202335.230096
引用本文: 王奇. 取消次级中子源对压水堆氚源项的影响分析[J]. 强激光与粒子束, 2023, 35: 116004. doi: 10.11884/HPLPB202335.230096
Wang Qi. Analysis of influence of canceling secondary neutron sources ontritium source terms in pressurized water reactors[J]. High Power Laser and Particle Beams, 2023, 35: 116004. doi: 10.11884/HPLPB202335.230096
Citation: Wang Qi. Analysis of influence of canceling secondary neutron sources ontritium source terms in pressurized water reactors[J]. High Power Laser and Particle Beams, 2023, 35: 116004. doi: 10.11884/HPLPB202335.230096

取消次级中子源对压水堆氚源项的影响分析

doi: 10.11884/HPLPB202335.230096
详细信息
    作者简介:

    王 奇,wangqi@hpr.com.cn

  • 中图分类号: TL75+1

Analysis of influence of canceling secondary neutron sources ontritium source terms in pressurized water reactors

  • 摘要: 在压水堆正常运行期间,氚贡献了压水堆液相流出物总活度的95%以上,是反应堆设计和运行中的关键放射性核素之一。通过对美国在运的8台堆芯设计非常相似的机组2000至2019年期间氚排放数据进行较为深度的数据清洗和分析研究,得出采用不锈钢包壳的Sb-Be次级中子源的氚释放是压水堆机组氚源项的重要来源之一,统计机组中次级中子源产氚贡献平均为7.5 TBq·a−1,结合理论计算,符合当前包壳材料发展和运行管理水平下的渗透比例10%~20%。取消次级中子源约可以降低20%的因氚排放造成的公众剂量,还可以降低氚源项对厂址规划机组数量的制约。此外,研究还发现,氚排放量的显著波动受到液态集中排放的显著影响,特别是在美国压水堆大修之前或期间,这将有助于优化未来机组放射性排放管理。
  • 图  1  参考机组年平均负荷因子

    Figure  1.  Annual average load factor of reference unit

    图  2  氚排放量的分布

    Figure  2.  Distribution of tritium emissions

    表  1  压水堆中氚生产的核反应

    Table  1.   Nuclear reaction of tritium production in PWR

    region nuclear reactions
    fuel $ {\text{U/Pu + }}{}_{\text{0}}^{\text{1}}{\text{n}}\xrightarrow{{}}{\text{FP1 + FP2 + }}{}_{\text{1}}^{\text{3}}{\text{H}} $
    antimony-beryllium
    (in secondary source)
    ${}_{\text{4}}^{\text{9}}{\text{Be + }}{}_{\text{0}}^{\text{1}}{\text{n}}\xrightarrow{{({\text{n}},\alpha )}}{}_{\text{2}}^{\text{4}}{\text{He + }}{}_{\text{2}}^{\text{6}}{\text{He}}$${}_{\text{2}}^{\text{6}}{\text{He}}\xrightarrow{{\text{β }}}{}_{\text{3}}^{\text{6}}{\text{Li}}$${}_{\text{3}}^{\text{6}}{\text{Li + }}{}_{\text{0}}^{\text{1}}{\text{n}}\xrightarrow{{({\text{n}},\alpha )}}{}_{\text{2}}^{\text{4}}{\text{He + }}{}_{\text{1}}^{\text{3}}{\text{H}}$
    ${}_{\text{4}}^{\text{9}}{\text{Be + }}{}_{\text{0}}^{\text{1}}{\text{n}}\xrightarrow{{{\text{(n,T)}}}}{}_{\text{3}}^{\text{7}}{\text{Li + }}{}_{\text{1}}^{\text{3}}{\text{H}}$${}_{\text{3}}^{\text{7}}{\text{Li + }}{}_{\text{0}}^{\text{1}}{\text{n}}\xrightarrow{{({\text{n,n}}\alpha )}}{}_{\text{2}}^{\text{4}}{\text{He + }}{}_{\text{0}}^{\text{1}}{\text{n + }}{}_{\text{1}}^{\text{3}}{\text{H}}$
    boric acid
    (in the primary coolant and control rod)
    ${}_{\text{5}}^{{\text{10}}}{\text{B + }}{}_{\text{0}}^{\text{1}}{\text{n}}\xrightarrow{{({\text{n}},2\alpha )}}{\text{2}}{}_{\text{2}}^{\text{4}}{\text{He + }}{}_{\text{1}}^{\text{3}}{\text{H}}$
    ${}_{\text{5}}^{{\text{10}}}{\text{B + }}{}_{\text{0}}^{\text{1}}{\text{n}}\xrightarrow{{({\text{n,n}}\alpha )}}{}_{\text{3}}^{\text{6}}{\text{Li + }}{}_{\text{0}}^{\text{1}}{\text{n + }}{}_{\text{2}}^{\text{4}}{\text{He}}$${}_{\text{3}}^{\text{6}}{\text{Li + }}{}_{\text{0}}^{\text{1}}{\text{n}}\xrightarrow{{({\text{n}},\alpha )}}{}_{\text{2}}^{\text{4}}{\text{He + }}{}_{\text{1}}^{\text{3}}{\text{H}}$
    ${}_{\text{5}}^{{\text{10}}}{\text{B + }}{}_{\text{0}}^{\text{1}}{\text{n}}\xrightarrow{{({\text{n}},\alpha )}}{}_{\text{3}}^{\text{7}}{\text{Li + }}{}_{\text{2}}^{\text{4}}{\text{He}}$${}_{\text{3}}^{\text{7}}{\text{Li + }}{}_{\text{0}}^{\text{1}}{\text{n}}\xrightarrow{{({\text{n,n}}\alpha )}}{}_{\text{2}}^{\text{4}}{\text{He + }}{}_{\text{0}}^{\text{1}}{\text{n + }}{}_{\text{1}}^{\text{3}}{\text{H}}$
    ${}_{\text{5}}^{{\text{11}}}{\text{B + }}{}_{\text{0}}^{\text{1}}{\text{n}}\xrightarrow{{{\text{(n,T)}}}}{}_{\text{4}}^{\text{9}}{\text{Be + }}{}_{\text{1}}^{\text{3}}{\text{H}}$${}_{\text{4}}^{\text{9}}{\text{Be + }}{}_{\text{0}}^{\text{1}}{\text{n}}\xrightarrow{{({\text{n}},\alpha )}}{}_{\text{2}}^{\text{4}}{\text{He + }}{}_{\text{2}}^{\text{6}}{\text{He}}$
    ${}_{\text{2}}^{\text{6}}{\text{He}}\xrightarrow{{\text{β }}}{}_{\text{3}}^{\text{6}}{\text{Li + }}{}_{{{ - 1}}}^{\text{0}}{\text{e}}$${}_{\text{3}}^{\text{6}}{\text{Li + }}{}_{\text{0}}^{\text{1}}{\text{n}}\xrightarrow{{({\text{n}},\alpha )}}{}_{\text{2}}^{\text{4}}{\text{He + }}{}_{\text{1}}^{\text{3}}{\text{H}}$
    ${}_{\text{4}}^{\text{9}}{\text{Be + }}{}_{\text{0}}^{\text{1}}{\text{n}}\xrightarrow{{{\text{(n,T)}}}}{}_{\text{3}}^{\text{7}}{\text{Li + }}{}_{\text{1}}^{\text{3}}{\text{H}}$${}_{\text{3}}^{\text{7}}{\text{Li + }}{}_{\text{0}}^{\text{1}}{\text{n}}\xrightarrow{{({\text{n,n}}\alpha )}}{}_{\text{2}}^{\text{4}}{\text{He + }}{}_{\text{0}}^{\text{1}}{\text{n + }}{}_{\text{1}}^{\text{3}}{\text{H}}$
    lithium hydroxide
    (in the primary coolant)
    ${}_{\text{3}}^{\text{6}}{\text{Li + }}{}_{\text{0}}^{\text{1}}{\text{n}}\xrightarrow{{({\text{n}},\alpha )}}{}_{\text{2}}^{\text{4}}{\text{He + }}{}_{\text{1}}^{\text{3}}{\text{H}}$
    ${}_{\text{3}}^{\text{7}}{\text{Li + }}{}_{\text{0}}^{\text{1}}{\text{n}}\xrightarrow{{({\text{n,n}}\alpha )}}{}_{\text{2}}^{\text{4}}{\text{He + }}{}_{\text{0}}^{\text{1}}{\text{n + }}{}_{\text{1}}^{\text{3}}{\text{H}}$
    deuterium
    (in the primary coolant)
    ${}_{\text{1}}^{\text{2}}{\text{H + }}_{\text{0}}^{\text{1}}{\text{n}}\xrightarrow{{({\text{n}},\gamma )}}{}_{\text{1}}^{\text{3}}{\text{H}}$
    下载: 导出CSV

    表  2  机组信息

    Table  2.   Information of the reactors

    reactor thermal capacity/MW number of assemblies active height/cm fuel configuration secondary neutron source (SNS) period of discharge
    group 1 A 3411 193 12 17×17 N 2000—2019
    B 3411 193 12 17×17 N 2001—2019
    C 3438 193 12 17×17 N 2001—2011
    D 3438 193 12 17×17 N 2001—2011
    group 2 E 3459 193 12 17×17 Y 2001—2019
    F 3468 193 12 17×17 Y 2000—2019
    G 3455 193 12 17×17 Y 2001—2019
    H 3455 193 12 17×17 Y 2001—2019
    下载: 导出CSV

    表  3  氚排放量统计结果

    Table  3.   Statistical results of tritium emissions

    unitaverage tritium emission/(TBq·a−1)maximum tritium emission/(TBq·a−1)
    gaseousliquidtotalgaseousliquidtotal
    group 1A3.818.222.04.832.437.1
    B3.022.225.24.833.538.3
    C2.121.523.62.633.836.4
    D2.222.624.82.534.336.8
    All2.8±0.721.1±1.723.9±1.24.8±1.134.3±1.638.3±1.2
    group 2E3.926.930.85.436.544.0
    F3.929.333.24.637.741.9
    G2.628.831.43.639.141.9
    H2.527.630.13.237.138.8
    All3.2±0.728.1±0.931.4±1.15.4±0.839.1±1.044.0±1.8
    下载: 导出CSV
  • [1] 上官志洪, 黄彦君, 陶云良, 等. 内陆核电厂排放氚的辐射环境影响评价[J]. 辐射防护, 2012, 32(2):65-71

    Shangguan Zhihong, Huang Yanjun, Tao Yunliang, et al. Radiological environmental impact assessment for tritium discharged from inland NPPs[J]. Radiation Protection, 2012, 32(2): 65-71
    [2] Peterson H T, Baker D A. Tritium production, releases and population doses at nuclear power reactors[J]. Fusion Technology, 1985, 8(2): 2544-2550.
    [3] 苏耿华, 包鹏飞, 韩嵩. 反应堆二次中子源源强计算及验证[J]. 强激光与粒子束, 2017, 29:036023 doi: 10.11884/HPLPB201729.160186

    Su Genghua, Bao Pengfei, Han Song. Calculation and verification of secondary neutron source intensity of nuclear reactor[J]. High Power Laser and Particle Beams, 2017, 29: 036023 doi: 10.11884/HPLPB201729.160186
    [4] Andrieu C, Ravel S, Ducros G, et al. Release of fission tritium through Zircaloy-4 fuel cladding tubes[J]. Journal of Nuclear Materials, 2005, 347(1/2): 12-19.
    [5] 付鹏涛, 代明亮, 祝兆文, 等. 基于运行反馈的压水堆氚排放量研究[J]. 强激光与粒子束, 2022, 34:026009 doi: 10.11884/HPLPB202234.210399

    Fu Pengtao, Dai Mingliang, Zhu Zhaowen, et al. Study of annual tritium discharge in pressurized water reactor based on historical data[J]. High Power Laser and Particle Beams, 2022, 34: 026009 doi: 10.11884/HPLPB202234.210399
    [6] 杨昭林, 王亮, 周永海, 等. 压水堆核电厂氚排放源项的计算及验证[J]. 核科学与工程, 2020, 40(3):359-366

    Yang Zhaolin, Wang Liang, Zhou Yonghai, et al. Calculation and verification of tritium release for PWR nuclear power plants[J]. Nuclear Science and Engineering, 2020, 40(3): 359-366
    [7] 孔亮. 压水堆换料循环取消次级中子源组件的研究[D]. 上海: 上海交通大学, 2018: 20-29

    Kong Liang. Study on cancelling secondary source assemblies during refuling cycles[D]. Shanghai: Shanghai Jiao Tong University, 2018: 20-29
    [8] Charlier A, Gubel P, Vandenberg C, et al. Experimental study of the tritium inventory in the BR3 and extrapolation to a P.W.R. of 900 MWe[R]. Luxembourg: Commission of the European Communities, 1982.
    [9] Burns K, Love E, Elmore M. Tritium production in secondary neutron sources in pressurized water reactors[J]. Fusion Science and Technology, 2017, 71(4): 544-548. doi: 10.1080/15361055.2017.1291038
    [10] Shaver M W, Lanning D D. Secondary startup neutron sources as a source of tritium in a pressurized water reactor (PWR) reactor coolant system[R]. Richland: Pacific Northwest National Lab. , 2010.
    [11] IAEA. Power reactor information system (PRIS)[EB/OL]. 2022 [2023-10-19]. https://www.iaea.org/resources/databases/power-reactor-information-system-pris.
    [12] U. S. NRC. Radioactive effluent and environmental reports[EB/OL]. 2022 [2023-10-19]. https://oriseapps.orau.gov/Effluent/Reports/Common/YearSiteReports.
    [13] Austin J H, Elleman T S, Verghese K. Surface effects on the diffusion of tritium in 304-stainless steel and zircaloy-2[J]. Journal of Nuclear Materials, 1973, 48(3): 307-316. doi: 10.1016/0022-3115(73)90027-5
    [14] Kearns J J. Terminal solubility and partitioning of hydrogen in the alpha phase of zirconium, Zircaloy-2 and Zircaloy-4[J]. Journal of Nuclear Materials, 1967, 22(3): 292-303. doi: 10.1016/0022-3115(67)90047-5
    [15] Andrieu C. Étude de la perméation du tritium à travers les gaines de crayons combustibles type R. E. P[D]. Grenoble: Grenoble INPG, 1998.
    [16] GB 6249-2011, 核动力厂环境辐射防护规定[S

    GB 6249-2011, Regulations for environmental radiation protection of nuclear power plant[S
  • 加载中
图(2) / 表(3)
计量
  • 文章访问数:  231
  • HTML全文浏览量:  75
  • PDF下载量:  184
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-21
  • 修回日期:  2023-10-20
  • 录用日期:  2023-10-24
  • 网络出版日期:  2023-10-27
  • 刊出日期:  2023-11-11

目录

    /

    返回文章
    返回