留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

脉冲中子闪烁探测器的工程可靠性设计与提升

马烈华 陈爽 李洪涛 彭旭升 张波涛 李波 王城 艾杰

马烈华, 陈爽, 李洪涛, 等. 脉冲中子闪烁探测器的工程可靠性设计与提升[J]. 强激光与粒子束, 2023, 35: 119002. doi: 10.11884/HPLPB202335.230130
引用本文: 马烈华, 陈爽, 李洪涛, 等. 脉冲中子闪烁探测器的工程可靠性设计与提升[J]. 强激光与粒子束, 2023, 35: 119002. doi: 10.11884/HPLPB202335.230130
Ma Liehua, Chen Shuang, Li Hongtao, et al. Engineering reliability design and improvement for pulsed neutron scintillation detector[J]. High Power Laser and Particle Beams, 2023, 35: 119002. doi: 10.11884/HPLPB202335.230130
Citation: Ma Liehua, Chen Shuang, Li Hongtao, et al. Engineering reliability design and improvement for pulsed neutron scintillation detector[J]. High Power Laser and Particle Beams, 2023, 35: 119002. doi: 10.11884/HPLPB202335.230130

脉冲中子闪烁探测器的工程可靠性设计与提升

doi: 10.11884/HPLPB202335.230130
详细信息
    作者简介:

    马烈华,69488054@qq.com

    通讯作者:

    艾 杰,aj_caomu@126.com

  • 中图分类号: O59;V417+.3

Engineering reliability design and improvement for pulsed neutron scintillation detector

  • 摘要: 针对一种在复杂环境条件下进行脉冲中子探测的闪烁探测器,开展了一系列的可靠性设计、保证工作。在设计上通过双通道冗余备份、抗振设计等方式提升了探测器的固有可靠性。此外还采取可靠性建模及指标分配的方式明确了探测器各部件的任务可靠性目标,通过FMECA分析方法研究了探测器各部件的故障模式及其影响,确定了可靠性重要部件。通过运用环境应力筛选试验及可靠性强化试验,进一步提升了探测器的可靠性。经初步验证,采取上述可靠性设计保障技术的脉冲中子探测器,其任务可靠度可达到99.9%以上。
  • 图  1  探测器功能原理框图

    Figure  1.  Functional principle diagram of the detector

    图  2  脉冲中子探测器的可靠性模型

    Figure  2.  Reliability model of pulsed neutron detector

    图  3  温度循环筛选试验条件

    Figure  3.  Settings of temperature cycle screening test

    图  4  随机振动筛选试验条件

    Figure  4.  Settings of random vibration screening test

    表  1  脉冲中子探测器可靠性指标分配表

    Table  1.   Reliability index distribution of pulsed neutron detector

    No functional unit reliability distribution value notes
    1 scintillator 0.9999 It is almost impossible to fail below the softening temperature.
    2 high voltage module 0.999 0
    3 high voltage divider 0.999 0
    4 PMT 0.980 0 Sensitive to the environment and has a history of failures.
    5 amplifier 0.990 0 Has a history of failures.
    6 connecting system 0.990 0 Has a history of failures.
    total 0.9982
    下载: 导出CSV

    表  2  脉冲中子探测器FMECA表(光电倍增管部分)

    Table  2.   FMECA table of the pulsed neutron detector (PMT part)

    function failure mode cause of
    failure
    effects of the failure severity probability
    level
    fault detection
    methods
    compensation
    measures
    local and higher level effects final effects
    photoelectric conversion and electronic multiplication anode output sensitivity decreases cathode poisoning / MCP resistance change / vacuum decrease the decrease of sensitivity of PMT leads to the decrease of neutron sensitivity The test task failed or the test result showed a large deviation. II C self inspection/neutron sensitivity test monitor the storage performance of the multiplier tube and install it after stabilization
    anode output discharge decrease of vacuum / interelectrode voltage resistance anode abnormal output damaged amplifier, no neutron signal output The test task failed or the test result showed a large deviation. II C self inspection/neutron sensitivity test strengthen the screening of multiplier tubes and design discharge protection circuits
    anode output drift exceeds the prescribed limit temperature drift of resistance of MCP neutron sensitivity distortion There is a big deviation in the test results. II C neutron sensitivity testing during temperature testing improving microchannel board resistance and optimizing voltage divider circuits
    下载: 导出CSV
  • [1] 赵天池. 传感器和探测器的物理原理和应用[M]. 北京: 科学出版社, 2008: 726-758

    Zhao Tianchi. Physical principles and applications of sensors and detectors[M]. Beijing: Science Press, 2008: 726-758
    [2] 汲长松. 中子探测实验方法[M]. 北京: 原子能出版社, 1998

    Ji Changsong. Neutron detection experiment method[M]. Beijing: Atomic Energy Press, 1988
    [3] 康锐, 王自力. 可靠性系统工程理论研究回顾与展望[J]. 航空学报, 2022, 43:527505 doi: 10.7527/S1000-6893.2022.27505

    Kang Rui, Wang Zili. Reliability systems engineering: a research review and prospect[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43: 527505 doi: 10.7527/S1000-6893.2022.27505
    [4] 孙龙, 胡湘洪, 高春雨. 可靠性发展历史与经验启示[J]. 电子产品可靠性与环境试验, 2021, 9(s2):1-4

    Sun Long, Hu Xianghong, Gao Chunyu. The development history and experience enlightenment[J]. Electronic Product Reliability and Environmental Testing, 2021, 9(s2): 1-4
    [5] 朱美光, 钱秋瑛, 王佳. 红外探测器组件可靠性保证技术[J]. 上海航天, 2014, 31(4):50-53 doi: 10.19328/j.cnki.1006-1630.2014.04.012

    Zhu Meiguang, Qian Qiuying, Wang Jia. Reliability assurance technology of infrared focal plane assembly[J]. Aerospace Shanghai, 2014, 31(4): 50-53 doi: 10.19328/j.cnki.1006-1630.2014.04.012
    [6] 张朴真, 何永强, 徐燕菱, 等. 深空探测器指向机构可靠性设计研究[J]. 机电产品开发与创新, 2022, 33(6):8-11

    Zhang Puzhen, He Yongqiang, Xu Yanling, et al. Research on reliability design of pointing mechanism of deep space detector[J]. Development & Innovation of Machinery & Electrical Products, 2022, 33(6): 8-11
    [7] 李明, 沈璐璐, 李凯. 质谱仪器的可靠性设计研究[J]. 质谱学报, 2020, 41(1):87-92 doi: 10.7538/zpxb.2019.0084

    Li Ming, Shen Lulu, Li Kai. Research on reliability design of mass spectrometer[J]. Journal of Chinese Mass Spectrometry Society, 2020, 41(1): 87-92 doi: 10.7538/zpxb.2019.0084
    [8] Zhou Jianrong, Xiu Qinglei, Zhou Xiaojuan, et al. Highly efficient GEM-based neutron detector for China Spallation Neutron Source[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2020, 953: 163051.
    [9] 魏伟伟, 杜强, 王力, 等. 掺钆液闪中子探测器的研制[J]. 强激光与粒子束, 2015, 27:066001 doi: 10.11884/HPLPB201527.066001

    Wei Weiwei, Du Qiang, Wang Li, et al. Manufacture of gadolinium-doped liquid scintillator detector[J]. High Power Laser and Particle Beams, 2015, 27: 066001 doi: 10.11884/HPLPB201527.066001
    [10] Fu Zaiwei, Pan Shangke, Yang Fan, et al. Neutron detection properties of Li6Y(BO3)3: Ce crystal[J]. Radiation Measurements, 2015, 72: 39-43. doi: 10.1016/j.radmeas.2014.11.010
    [11] 艾杰, 代红跃, 文延伟, 等. 可在恶劣环境下工作的塑料闪烁探测器研究[J]. 核电子学与探测技术, 2009, 29(3):558-560 doi: 10.3969/j.issn.0258-0934.2009.03.017

    Ai Jie, Dai Hongyue, Wen Yanwei, et al. Study on plastic scintillation detector used in very terrible environments[J]. Nuclear Electronics & Detection Technology, 2009, 29(3): 558-560 doi: 10.3969/j.issn.0258-0934.2009.03.017
    [12] 潘勇, 黄进永, 胡宁. 可靠性概论[M]. 北京: 电子工业出版社, 2015: 170-173

    Pan Yong, Huang Jinyong, Hu Ning. An introduction to reliability[M]. Beijing: Electronic Industry Press, 2015: 170-173
    [13] 马烈华, 龙继东, 陈永涛, 等. 基于高压模块供电的MCP-PMT高压击穿故障分析及设计改进[J]. 强激光与粒子束, 2022, 34:095007

    Ma Liehua, Long Jidong, Chen Yongtao, et al. Analysis and design improvement of MCP-PMT high-voltage breakdown fault based on high voltage module power supply[J]. High Power Laser and Particle Beams, 2022, 34: 095007
    [14] GJB/Z 1391-2006, 故障模式、影响及危害性分析指南[S

    GJB/Z 1391-2006, Guide to failure mode, effects and criticality analysis[S
    [15] 胡湘洪, 高军, 李劲. 可靠性试验[M]. 北京: 电子工业出版社, 2015: 80-85

    Hu Xianghong, Gao Jun, Li Jin. Reliability test[M]. Beijing: Electronic Industry Press, 2015: 80-85
    [16] GJB 899A-2009, 可靠性鉴定和验收试验[S

    GJB 899A-2009, Reliability testing for qualification and production acceptance[S
  • 加载中
图(4) / 表(2)
计量
  • 文章访问数:  158
  • HTML全文浏览量:  56
  • PDF下载量:  42
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-13
  • 修回日期:  2023-10-22
  • 录用日期:  2023-10-23
  • 网络出版日期:  2023-10-30
  • 刊出日期:  2023-11-11

目录

    /

    返回文章
    返回