留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

有机氟酸蚀刻提高熔石英的抗激光损伤性能

匙芳廷 李啸宇 李园利 吕丽娜 彭豪 杜志远

匙芳廷, 李啸宇, 李园利, 等. 有机氟酸蚀刻提高熔石英的抗激光损伤性能[J]. 强激光与粒子束, 2023, 35: 111005. doi: 10.11884/HPLPB202335.230131
引用本文: 匙芳廷, 李啸宇, 李园利, 等. 有机氟酸蚀刻提高熔石英的抗激光损伤性能[J]. 强激光与粒子束, 2023, 35: 111005. doi: 10.11884/HPLPB202335.230131
Chi Fangting, Li Xiaoyu, Li Yuanli, et al. Improving laser damage resistance of fused silica by organic fluoric acid etching[J]. High Power Laser and Particle Beams, 2023, 35: 111005. doi: 10.11884/HPLPB202335.230131
Citation: Chi Fangting, Li Xiaoyu, Li Yuanli, et al. Improving laser damage resistance of fused silica by organic fluoric acid etching[J]. High Power Laser and Particle Beams, 2023, 35: 111005. doi: 10.11884/HPLPB202335.230131

有机氟酸蚀刻提高熔石英的抗激光损伤性能

doi: 10.11884/HPLPB202335.230131
基金项目: 龙山学术人才科研支持计划项目(17LZX610、18LZX553、18 LZXT0303)
详细信息
    作者简介:

    匙芳廷,chifangting@swust.edu.cn

  • 中图分类号: O434

Improving laser damage resistance of fused silica by organic fluoric acid etching

  • 摘要: 熔石英元件的抗激光损伤性能对高能激光器的稳定运行具有重要意义。为了提升熔石英元件抗激光损伤性能,针对传统氢氟酸蚀刻产生再沉积物的缺点,提出了采用有机氟酸蚀刻提升熔石英元件抗激光损伤性能的方法。有机氟酸蚀刻的优势在于产物具有较好的溶解性,因而产生再沉积物的可能性降低。采用有机氟酸溶液静态蚀刻熔石英元件,并对元件的表面质量、透过率和激光损伤密度进行了表征分析。表面质量和透过率的结果一致显示熔石英元件经有机氟酸蚀刻后,元件表面的再沉积物和污垢较少,表明有机氟酸具有较好的抑制再沉积物生成的效果。激光损伤密度结果显示,有机氟酸蚀刻熔石英的深度为6 μm时,元件的平均激光损伤密度为0.26 cm−2,接近先进缓释处理2(AMP2)工艺的水平。基于有机氟酸蚀刻提高熔石英元件的抗激光损伤性能为激光负载能力的提升开辟了一条新途径。
  • 图  1  有机氟酸静态蚀刻熔石英元件示意图

    Figure  1.  Schematic diagram of organic fluoric acid statically etched fused silica optics

    图  2  有机氟酸对熔石英元件的蚀刻速率

    Figure  2.  Etching rate of organic fluoric acid on fused silica optics

    图  3  熔石英蚀刻后的暗场照片

    Figure  3.  Dark field images of fused silica after etching

    图  5  熔石英表面划痕蚀刻前后的光学显微镜照片

    Figure  5.  Optical microscope images of scratches on the fused silica surface

    图  6  熔石英蚀刻前后透过率的变化

    Figure  6.  Transmittance spectra of fused silica

    图  4  熔石英蚀刻后的光学显微镜照片

    Figure  4.  Optical microscope images of fused silica after etching

    图  7  熔石英的抗激光损伤性能

    Figure  7.  Laser damage of fused silica

  • [1] Tong Dan, Zhang Qiang, Zheng Yixuan, et al. Committed emissions from existing energy infrastructure jeopardize 1.5 C climate target[J]. Nature, 2019, 572(7769): 373-377. doi: 10.1038/s41586-019-1364-3
    [2] Atzeni S, Batani D, Danson C N, et al. Breakthrough at the NIF paves the way to inertial fusion energy[J]. Europhysics News, 2022, 53(1): 18-23. doi: 10.1051/epn/2022106
    [3] Lan Ke, Dong Yunsong, Wu Junfeng, et al. First inertial confinement fusion implosion experiment in octahedral spherical hohlraum[J]. Physical Review Letters, 2021, 127: 245001. doi: 10.1103/PhysRevLett.127.245001
    [4] Jiang Shaoen, Wang Feng, Ding Yongkun, et al. Experimental progress of inertial confinement fusion based at the ShenGuang-III laser facility in China[J]. Nuclear Fusion, 2019, 59: 032006. doi: 10.1088/1741-4326/aabdb6
    [5] Bude J, Miller P, Baxamusa S, et al. High fluence laser damage precursors and their mitigation in fused silica[J]. Optics Express, 2014, 22(5): 5839-5851. doi: 10.1364/OE.22.005839
    [6] Suratwala T I, Miller P E, Bude J D, et al. HF-based etching processes for improving laser damage resistance of fused silica optical surfaces[J]. Journal of the American Ceramic Society, 2011, 94(2): 416-428. doi: 10.1111/j.1551-2916.2010.04112.x
    [7] Liu Hongjie, Huang Jin, Wang Fengrui, et al. Subsurface defects of fused silica optics and laser induced damage at 351 nm[J]. Optics Express, 2013, 21(10): 12204-12217. doi: 10.1364/OE.21.012204
    [8] Cao Zhen, Wei Chaoyang, Cheng Xin, et al. Ground fused silica processed by combined chemical etching and CO2 laser polishing with super-smooth surface and high damage resistance[J]. Optics Letters, 2020, 45(21): 6014-6017. doi: 10.1364/OL.409857
    [9] Zhang Chuanchao, Zhang Lijuan, Jiang Xiaolong, et al. Influence of pulse length on heat affected zones of evaporatively-mitigated damages of fused silica optics by CO2 laser[J]. Optics and Lasers in Engineering, 2020, 125: 105857. doi: 10.1016/j.optlaseng.2019.105857
    [10] Wang Hongxiang, Wang Chu, Zhang Mingzhuang, et al. Investigation of subsurface damage density and morphology impact on the laser-induced damage threshold of fused silica[J]. Applied Optics, 2019, 58(36): 9839-9845. doi: 10.1364/AO.58.009839
    [11] Zhao Linjie , Cheng Jian, Chen Mingjun, et al. Formation mechanism of a smooth, defect-free surface of fused silica optics using rapid CO2 laser polishing[J]. International Journal of Extreme Manufacturing, 2019, 1: 035001.
    [12] Li Bo, Hou Chunyuan, Tian Chengxiang, et al. Layer by layer exposure of subsurface defects and laser-induced damage mechanism of fused silica[J]. Applied Surface Science, 2020, 508: 145186. doi: 10.1016/j.apsusc.2019.145186
    [13] Sun Laixi, Huang Jin, Shao Ting, et al. Effects of combined process of reactive ion etching and dynamic chemical etching on UV laser damage resistance and surface quality of fused silica optics[J]. Optics Express, 2018, 26(14): 18006-18018. doi: 10.1364/OE.26.018006
    [14] Manes K R, Spaeth M L, Adams J J, et al. Damage mechanisms avoided or managed for NIF large optics[J]. Fusion Science and Technology, 2016, 69(1): 146-249. doi: 10.13182/FST15-139
    [15] Dahmani F, Lambropoulos J C, Schmid A W, et al. Crack arrest and stress dependence of laser-induced surface damage in fused-silica and borosilicate glass[J]. Applied Optics, 1999, 38(33): 6892-6903. doi: 10.1364/AO.38.006892
    [16] Bertussi B, Cormont P, Palmier S, et al. Initiation of laser-induced damage sites in fused silica optical components[J]. Optics Express, 2009, 17(14): 11469-11479. doi: 10.1364/OE.17.011469
    [17] Suratwala T, Wong L, Miller P, et al. Sub-surface mechanical damage distributions during grinding of fused silica[J]. Journal of Non-Crystalline Solids, 2006, 352(52/54): 5601-5617.
    [18] Miller P E, Bude J D, Suratwala T I, et al. Fracture-induced subbandgap absorption as a precursor to optical damage on fused silica surfaces[J]. Optics Letters, 2010, 35(16): 2702-2704. doi: 10.1364/OL.35.002702
    [19] Bloembergen N. Role of cracks, pores, and absorbing inclusions on laser induced damage threshold at surfaces of transparent dielectrics[J]. Applied Optics, 1973, 12(4): 661-664. doi: 10.1364/AO.12.000661
    [20] Li Yaguo, Yuan Zhigang, Wang Jian, et al. Laser-induced damage characteristics in fused silica surface due to mechanical and chemical defects during manufacturing processes[J]. Optics & Laser Technology, 2017, 91: 149-158.
    [21] Sun Laixi, Shao Ting, Zhou Xinda, et al. KOH-based shallow etching for exposing subsurface damage and increasing laser damage resistance of fused silica optical surface[J]. Optical Materials, 2020, 108: 110249. doi: 10.1016/j.optmat.2020.110249
    [22] Pfiffer M, Cormont P, Fargin E, et al. Effects of deep wet etching in HF/HNO3 and KOH solutions on the laser damage resistance and surface quality of fused silica optics at 351 nm[J]. Optics Express, 2017, 25(5): 4607-4620. doi: 10.1364/OE.25.004607
    [23] Zhong Yaoyu, Dai Yifan, Tian Ye, et al. Effect on nanoscale damage precursors of fused silica with wet etching in KOH solutions[J]. Optical Materials Express, 2021, 11(3): 884-894. doi: 10.1364/OME.419610
    [24] Sun Laixi, Liu Hongjie, Huang Jin, et al. Reaction ion etching process for improving laser damage resistance of fused silica optical surface[J]. Optics Express, 2016, 24(1): 199-211. doi: 10.1364/OE.24.000199
    [25] Kamimura T, Mori Y, Sasaki T, et al. Ion etching of fused silica glasses for high-power lasers[J]. Japanese Journal of Applied Physics, 1998, 37: 4840. doi: 10.1143/JJAP.37.4840
    [26] Zhong Yaoyu, Dai Yifan, Shi Feng, et al. Effects of ion beam etching on the nanoscale damage precursor evolution of fused silica[J]. Materials, 2020, 13: 1294. doi: 10.3390/ma13061294
    [27] Neauport J, Ambard C, Cormont P, et al. Subsurface damage measurement of ground fused silica parts by HF etching techniques[J]. Optics Express, 2009, 17(22): 20448-20456. doi: 10.1364/OE.17.020448
    [28] Laurence T A, Bude J D, Ly S, et al. Extracting the distribution of laser damage precursors on fused silica surfaces for 351 nm, 3 ns laser pulses at high fluences (20-150 J/cm2)[J]. Optics Express, 2012, 20(10): 11561-11573. doi: 10.1364/OE.20.011561
    [29] Ye Xin, Huang Jin, Liu Hongjie, et al. Advanced mitigation process (AMP) for improving laser damage threshold of fused silica optics[J]. Scientific Reports, 2016, 6: 31111. doi: 10.1038/srep31111
    [30] Ye Hui, Li Yaguo, Yuan Zhigang, et al. Ultrasonic-assisted wet chemical etching of fused silica for high-power laser systems[J]. International Journal of Applied Glass Science, 2018, 9(2): 288-295. doi: 10.1111/ijag.12332
    [31] Liu Hongjie, Ye Xin, Zhou Xinda, et al. Subsurface defects characterization and laser damage performance of fused silica optics during HF-etched process[J]. Optical Materials, 2014, 36(5): 855-860. doi: 10.1016/j.optmat.2013.11.022
    [32] Zheng Zhi, Zu Xiaotao, Jiang Xiaodong, et al. Effect of HF etching on the surface quality and laser-induced damage of fused silica[J]. Optics & Laser Technology, 2012, 44(4): 1039-1042.
    [33] Shi Feng, Tian Ye, Peng Xiaoqiang, et al. Combined technique of elastic magnetorheological finishing and HF etching for high-efficiency improving of the laser-induced damage threshold of fused silica optics[J]. Applied Optics, 2014, 53(4): 598-604. doi: 10.1364/AO.53.000598
    [34] Ye Hui, Li Yaguo, Yuan Zhigang, et al. Laser induced damage characteristics of fused silica optics treated by wet chemical processes[J]. Applied Surface Science, 2015, 357: 498-505. doi: 10.1016/j.apsusc.2015.09.065
    [35] Cheng Jian, Wang Jinghe, Hou Jing, et al. Effect of polishing-induced subsurface impurity defects on laser damage resistance of fused silica optics and their removal with HF acid etching[J]. Applied Sciences, 2017, 7: 838. doi: 10.3390/app7080838
    [36] Sun Laixi, Huang Jin, Liu Hongjie, et al. Combination of reaction ion etching and dynamic chemical etching for improving laser damage resistance of fused silica optical surfaces[J]. Optics Letters, 2016, 41(19): 4464-4467. doi: 10.1364/OL.41.004464
    [37] Ye Hui, Li Yaguo, Zhang Qinghua, et al. Post-processing of fused silica and its effects on damage resistance to nanosecond pulsed UV lasers[J]. Applied Optics, 2016, 55(11): 3017-3025. doi: 10.1364/AO.55.003017
    [38] Liu Taixiang, Yang Ke, Zhang Zhuo, et al. Hydrofluoric acid–based etching effect on surface pit, crack, and scratch and laser damage site of fused silica optics[J]. Optics Express, 2019, 27(8): 10705-10728. doi: 10.1364/OE.27.010705
    [39] Ye Hui, Li Yaguo, Xu Qiao, et al. Effects of wet chemical etching on scratch morphology and laser damage resistance of fused silica[J]. Silicon, 2020, 12(2): 425-432. doi: 10.1007/s12633-019-00150-4
    [40] Li Changpeng, Sun Yuancheng, Song Xuefu, et al. Capping a glass thin layer on the etched surface via plasma chemical vapor deposition for improving the laser damage performance of fused silica[J]. Optics Express, 2019, 27(3): 2268-2280. doi: 10.1364/OE.27.002268
    [41] 王洪祥, 李成福, 朱本温, 等. 光学元件亚表面缺陷的损伤性检测方法[J]. 强激光与粒子束, 2014, 26:122008 doi: 10.11884/HPLPB201426.122008

    Wang Hongxiang, Li Chengfu, Zhu Benwen, et al. Destructive methods for detecting subsurface defects of fused silica optics[J]. High Power Laser and Particle Beams, 2014, 26: 122008 doi: 10.11884/HPLPB201426.122008
    [42] 何祥, 谢磊, 赵恒, 等. 熔石英元件抛光表面的亚表面损伤研究[J]. 强激光与粒子束, 2016, 28:101007 doi: 10.11884/HPLPB201628.151108

    He Xiang, Xie Lei, Zhao Heng, et al. Characterization of polishing induced subsurface damages in fused silica optics[J]. High Power Laser and Particle Beams, 2016, 28: 101007 doi: 10.11884/HPLPB201628.151108
    [43] 项震, 聂传继, 葛剑虹, 等. 光学元件亚表面缺陷结构的蚀刻消除[J]. 强激光与粒子束, 2007, 19(3):373-376

    Xiang Zhen, Nie Chuanji, Ge Jianhong, et al. Eliminating of subsurface damage structure[J]. High Power Laser and Particle Beams, 2007, 19(3): 373-376
    [44] 李雨菡, 肖华攀, 王海容, 等. 湿法刻蚀处理熔石英光学元件研究进展[J]. 激光与光电子学进展, 2021, 58:1516026

    Li Yuhan, Xiao Huapan, Wang Hairong, et al. Review on wet etching technique of fused silica optical elements[J]. Laser & Optoelectronics Progress, 2021, 58: 1516026
    [45] 郭袁俊, 祖小涛, 蒋晓东, 等. 物理法和化学法制备的单层ZrO2膜的激光损伤行为差异[J]. 强激光与粒子束, 2007, 19(11):1849-1852

    Guo Yuanjun, Zu Xiaotao, Jiang Xiaodong, et al. Comparison of laser-induced damage of monolayer ZrO2 films preparated by PVD and sol-gel methods[J]. High Power Laser and Particle Beams, 2007, 19(11): 1849-1852
    [46] 苗心向, 袁晓东, 王海军, 等. 熔石英表面铜膜污染物诱导损伤实验研究[J]. 强激光与粒子束, 2008, 20(9):1483-1486

    Miao Xinxiang, Yuan Xiaodong, Wang Haijun, et al. Experiment of laser induced damage threshold for fused silica initiated at thin film contamination of Cu on surface[J]. High Power Laser and Particle Beams, 2008, 20(9): 1483-1486
    [47] 朱丹, 林灿生. 硝酸溶液中钼锆沉淀溶度积的研究[J]. 核化学与放射化学, 2002, 24(2):77-83 doi: 10.3969/j.issn.0253-9950.2002.02.003

    Zhu Dan, Lin Cansheng. Study of solubility product on precipitate of molybdenum and zirconium in nitric acid[J]. Journal of Nuclear and Radiochemistry, 2002, 24(2): 77-83 doi: 10.3969/j.issn.0253-9950.2002.02.003
  • 加载中
图(7)
计量
  • 文章访问数:  194
  • HTML全文浏览量:  100
  • PDF下载量:  42
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-14
  • 修回日期:  2023-09-27
  • 录用日期:  2023-09-27
  • 网络出版日期:  2023-10-20
  • 刊出日期:  2023-11-11

目录

    /

    返回文章
    返回