Review of optical phased array technology and its applications
-
摘要: 光学相控阵技术具有响应速度快、系统紧凑、功能多样和控制灵活等优点,在众多科学技术领域得到了广泛的应用。在近50年来的光学相控阵研究与应用中,涌现出了众多卓越的成果。为了对光学相控阵领域的发展进行梳理,简要回顾了光学相控阵技术的历史,并论述了光学相控阵技术的基本原理。从光束发射与接收等不同应用场景的角度,结合笔者的思考,深入介绍了光学相控阵在高品质的光源技术、激光相干合成技术、光束扫描技术、大气链路畸变控制技术以及合成孔径探测与成像技术多个领域的发展现状,并最后对光学相控阵技术的瓶颈与未来的发展研究趋势进行了评述。Abstract: The optical phased array technology has the advantages of fast response speed, compact structure, and flexibility in control, thus it has been widely used in many scientific and technological fields. Over the past 50 years, many excellent research results have emerged. To give an overview of the optical phased arrays, the article first briefly reviews the history of the optical phased arrays, and introduces the basic principles. From the perspective of different applications including beam projecting and receiving, combined with the author’s thinking, the current status of the developments in high-quality laser source, laser coherent combining, laser steering, atmospheric distortion correction, and synthetic aperture imaging are introduced in detail. Finally, the bottleneck and the future development trends of the optical phased arrays are given.
-
表 1 各类激光光源技术的对比
Table 1. Contrast of different laser sources
type power feature compactness applicability in OPA gas laser >500 kW extremely high power
large volumeextremely low × chemical laser >MW extremely high power
large volumeextremely low × solid-state laser >100 kW high power
compact structurehigh √ fiber laser ~10 kW high power
flexiblehigher √ semiconductor laser ~100 W highly compact
high efficiencyextremely high √ year type institution power/kW beam quality 2009 slab Northrop Grumman , USA 15.3 1.58 2010 slab North China Research Institute of Electro-Optics, China 11.0 4.8 2011 slab China Academy of Engineering Physics, China 11.3 7.56 2012 disk Boeing, USA 30.0 < 2 2015 disk General Atomics, USA 150.0 2018 slab China Academy of Engineering Physics, China 22.3 3.3 2018 disk China Academy of Engineering Physics, China 9.8 14.7 2019 slab Technical Institute of Physics and Chemistry, China 60.0 2021 waveguide China Academy of Engineering Physics, China 10.0 < 3 year type institution power/kW beam quality 2016 monolithic fiber Fujikura Ltd., Japan 2 1.2 2016 National University of Defense Technology, China 2 1.6 2017 Fujikura Ltd., Japan 3 1.3 2017 National University of Defense Technology, China 3.05 1.3 2018 Fujikura Ltd., Japan 5 1.3 2018 National University of Defense Technology, China 5.2 2.2 2020 Fujikura Ltd., Japan 8 2020 National University of Defense Technology, China 7 2.4 2021 National University of Defense Technology, China 6 1.3 2015 MOPA National University of Defense Technology, China 3.15 1.6 2016 Massachusetts Institute of Technology, USA 3.1 1.15 2017 Tianjin University, China 8.05 4 2018 China Academy of Engineering Physics, China 11.23 2019 Shanghai Institute of Optics and Fine Mechanics, China 10.14 2021 China Academy of Engineering Physics, China 5.07 1.252 2021 National University of Defense Technology, China 6 1.36 year type institution power/kW number of channels 2008 solid-state laser Northrop Grumman, USA 30 2 2009 Northrop Grumman, USA 100 (Record) 8 2011 fiber laser Thales Research & Technology, France 64 2011 National University of Defense Technology, China 1.08 9 2011 Massachusetts Institute of Technology, USA 4 8 2011 University of Dayton, USA 7 2014 Northrop Grumman, USA 2.4 3 2015 Massachusetts Institute of Technology, USA 44 42 2016 University of Dayton, USA 21 2019 National University of Defense Technology, China 60 2019 National University of Defense Technology, China 8 7 2020 Thales Research & Technology, France 0.105 61 2020 Civan Advanced Technologies, Israel 16 37 2020 National University of Defense Technology, China 107 (record) 表 5 相控阵光束扫描技术特点对比与主要发展趋势分析
Table 5. Contrast of optical phased arrays and corresponding development trend
type maturity feature future trends liquid crystal OPA high mature fabrication technology
suitable for high-power applicationlarge aperture
high damage threshold
large rangewaveguide OPA low compactness
large view field
high frequencymore channels
larger view field
higher frequencyMEMS OPA low high efficiency
fast responsemore channels novel OPA flexible more advantages integration 表 6 基于目标在回路的大气畸变控制技术代表性研究成果[144-148]
Table 6. Representative research results of atmospheric distortion correction based on TIL
year institute number of channels experimental environment 2011 University of Dayton, USA 7 7 km outdoor 2016 21 7 km outdoor 2012 Institute of Optics and Electronics, China 7 5 m in Lab. (without turbulence) 2018 7 0.2 km outdoor 2021 19 2 km outdoor 2021 51 2.1 km outdoor 2011 National University of Defense Technology, China 2 10 m in Lab.(without turbulence) 2012 9 10 m in Lab.(without turbulence) 2018 6 0.8 km outdoor -
[1] 徐龙道. 物理学词典[M]. 北京: 科学出版社, 2004Xu Longdao. Dictionary of physics[M]. Beijing: Science Press, 2004 [2] Mahan A I, Bitterli C V, Cannon S M. Far-field diffraction patterns of single and multiple apertures bounded by arcs and radii of concentric circles[J]. Journal of the Optical Society of America, 1964, 54(6): 721-732. doi: 10.1364/JOSA.54.000721 [3] Friis H T, Feldman C B. A multiple unit steerable antenna for short-wave reception[J]. Proceedings of the Institute of Radio Engineers, 1937, 25(7): 841-917. [4] 赵志超. 导弹防御雷达网数据融合技术研究[D]. 长沙: 国防科技大学, 2010Zhao Zhichao. Study on data fusion techniques of missile defense radar network[D]. Changsha: National University of Defense Technology, 2010 [5] Meyer R A. Optical beam steering using a multichannel lithium tantalate crystal[J]. Applied Optics, 1972, 11(3): 613-616. doi: 10.1364/AO.11.000613 [6] Chang Shuo, Wang Zhaokun, Wang D N, et al. Tunable and dual-wavelength mode-locked Yb-doped fiber laser based on graded-index multimode fiber device[J]. Optics & Laser Technology, 2021, 140: 107081. [7] Wu Bo, Zhang Bin, Liu Weijie, et al. Recoverable and rewritable waveguide beam splitters fabricated by tailored femtosecond laser writing of lithium tantalate crystal[J]. Optics & Laser Technology, 2022, 145: 107500. [8] Zhu Shuangqi, Xu Zhentao, Zhang Hao, et al. Liquid crystal integrated metadevice for reconfigurable hologram displays and optical encryption[J]. Optics Express, 2021, 29(6): 9553-9564. doi: 10.1364/OE.419914 [9] Hsu C P, Li Boda, Solano-Rivas B, et al. A review and perspective on optical phased array for automotive LiDAR[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2021, 27: 8300416. [10] Lu Ping, Xu Weihan, Zhu Chen, et al. Integrated multi-beam optical phased array based on a 4 × 4 Butler matrix[J]. Optics Letters, 2021, 46(7): 1566-1569. doi: 10.1364/OL.419828 [11] Fathi H, Närhi M, Gumenyuk R. Towards ultimate high-power scaling: coherent beam combining of fiber lasers[J]. Photonics, 2021, 8: 566. doi: 10.3390/photonics8120566 [12] Tang Mingyuan, Cao Jie, Hao Qun, et al. Wide range retina-like scanning based on liquid crystal optical phased array[J]. Optics and Lasers in Engineering, 2022, 151: 106885. doi: 10.1016/j.optlaseng.2021.106885 [13] 耿超, 李枫, 黄冠, 等. 基于光纤自适应操控的激光相控阵技术研究进展(特邀)[J]. 红外与激光工程, 2018, 47:0103003 doi: 10.3788/IRLA201847.0103003Geng Chao, Li Feng, Huang Guan, et al. Research Progress of laser phased array technique based on fiber adaptive manipulation (Invited)[J]. Infrared and Laser Engineering, 2018, 47: 0103003 doi: 10.3788/IRLA201847.0103003 [14] DeHainaut C R, Duneman D C, Dymale R C, et al. Wide field performance of a phased array telescope[J]. Optical Engineering, 1995, 34(3): 876-880. doi: 10.1117/12.196461 [15] Qin Qi, Yan Fengping, Liu Yan, et al. Multi-wavelength thulium-doped fiber laser via a polarization-maintaining Sagnac loop mirror with a theta-shaped configuration[J]. Journal of Lightwave Technology, 2021, 39(13): 4517-4524. doi: 10.1109/JLT.2021.3072226 [16] Ma Pengfei, Chang Hongxiang, Ma Yanxing, et al. 7.1 kW coherent beam combining system based on a seven-channel fiber amplifier array[J]. Optics & Laser Technology, 2021, 140: 107016. [17] Van Acoleyen K, Bogaerts W, Jágerská J, et al. Off-chip beam steering with a one-dimensional optical phased array on silicon-on-insulator[J]. Optics Letters, 2009, 34(9): 1477-1479. doi: 10.1364/OL.34.001477 [18] Wang Ke, Yuan Zeshi, Wong E, et al. Experimental demonstration of indoor infrared optical wireless communications with a silicon photonic integrated circuit[J]. Journal of Lightwave Technology, 2019, 37(2): 619-626. doi: 10.1109/JLT.2018.2889252 [19] He Jingwen, Dong Tao, Xu Yue. Review of photonic integrated optical phased arrays for space optical communication[J]. IEEE Access, 2020, 8: 188284-188298. doi: 10.1109/ACCESS.2020.3030627 [20] Kendrick R L, Aubrun J N, Bell R, et al. Wide-field Fizeau imaging telescope: experimental results[J]. Applied Optics, 2006, 45(18): 4235-4240. doi: 10.1364/AO.45.004235 [21] Corcoran C J, Pasch K A. Modal analysis of a self-Fourier laser cavity[J]. Journal of Optics A: Pure and Applied Optics, 2005, 7(5): L1. doi: 10.1088/1464-4258/7/5/L01 [22] Minden M L. Passive coherent combining of fiber oscillators[C]//Proceedings of SPIE 6453, Fiber Lasers IV: Technology, Systems, and Applications. 2007: 6453. [23] Daniault L, Hanna M, Papadopoulos D N, et al. Passive coherent beam combining of two femtosecond fiber chirped-pulse amplifiers[J]. Optics Letters, 2011, 36(20): 4023-4025. doi: 10.1364/OL.36.004023 [24] Kurtz R M, Pradhan R D, Tun N, et al. Mutual injection locking: a new architecture for high-power solid-state laser arrays[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2005, 11(3): 578-586. doi: 10.1109/JSTQE.2005.850240 [25] Wickham M, Anderegg J, Brosnan S, et al. Coherently coupled high power fiber arrays[C]//Advanced Solid-State Photonics 2004. 2004: 202-206. [26] Shay T M. Theory of electronically phased coherent beam combination without a reference beam[J]. Optics Express, 2006, 14(25): 12188-12195. doi: 10.1364/OE.14.012188 [27] Yu C X, Kansky J E, Shaw S E J, et al. Coherent beam combining of a large number of PM fibers in a 2D fiberarray[C]//2006 Conference on Lasers and Electro-optics and 2006 Quantum Electronics and Laser Science Conference. 2006: 1-2. [28] Stockley J, Serati S. Advances in liquid crystal beam steering[C]//Proceedings of SPIE 5550, Free-Space Laser Communications IV. 2004: 32. [29] Wight D R, Heaton J M, Hughes B T, et al. Novel phased array optical scanning device implemented using GaAs/AlGaAs technology[J]. Applied Physics Letters, 1991, 59(8): 899-901. doi: 10.1063/1.105270 [30] Van Acoleyen K, Rogier H, Baets R. Two-dimensional optical phased array antenna on silicon-on-insulator[J]. Optics Express, 2010, 18(13): 13655-13660. doi: 10.1364/OE.18.013655 [31] Koh K H, Lee C. A two-dimensional MEMS scanning mirror using hybrid actuation mechanisms with low operation voltage[J]. Journal of Microelectromechanical Systems, 2012, 21(5): 1124-1135. doi: 10.1109/JMEMS.2012.2196497 [32] Seldin J H, Paxman R G, Zarifis V G, et al. Closed-loop wavefront sensing for a sparse-aperture multitelescope array using broadband phase diversity[C]//Proceedings of SPIE 4091, Imaging Technology and Telescopes. 2000: 48-63. [33] Hill J M, Salinari P. The large binocular telescope project[C]//Proceedings of SPIE 5489, Ground-based Telescopes. 1998. [34] 马阎星. 光纤激光抖动法相干合成技术研究[D]. 长沙: 国防科学技术大学, 2014Ma Yanxing. Study on coherent beam combination of fiber laser based on dithering phase locking technology[D]. Changsha: National University of Defense Technology, 2014 [35] Seifert L, Liesener J, Tiziani H J. Adaptive Shack-Hartmann sensor[C]//Proceedings of SPIE 5144, Optical Measurement Systems for Industrial Inspection III. 2003: 250-258. [36] Zhang Xiaofang, Guo Jing, Ren Xiaofeng, et al. The wavefront sensorless adaptive optics correction for a wide field of view optics system based on the SPGD algorithm[C]//Proceedings of SPIE 7849, Optical Design and Testing IV. 2010: 78492H. [37] Vorontsov M. Adaptive photonics phase-locked elements (APPLE): system architecture and wavefront control concept[C]//Proceedings of SPIE 5895, Target-in-the-Loop: Atmospheric Tracking, Imaging, and Compensation II. 2005. [38] Dorschner T A. Adaptive photonic phase locked elements: an overview[C]//MTO Symposium. 2007. [39] 刘泽金, 周朴, 许晓军, 等. 高平均功率光纤激光相干合成[M]. 长沙: 国防工业出版社, 2016Liu Zejing, Zhou Pu, Xu Xiaojun, et al. Coherent beam combining of high average power fiber lasers[M]. Changsha: National Defense Industry Press, 2016 [40] Coffey V. High-energy lasers: new advances in defense applications[J]. Optics and Photonics News, 2014, 25(10): 28-35. doi: 10.1364/OPN.25.10.000028 [41] Optics. org. DARPA extends laser weapon range[EB/OL]. (2014-03-11). https://optics.org/news/5/3/13. [42] Di Pengcheng, Li Xuepeng, Yang Jing, et al. High-power VCSEL-pumped slab laser with temperature fluctuation adaptability[J]. IEEE Photonics Technology Letters, 2021, 33(8): 395-398. doi: 10.1109/LPT.2021.3065510 [43] Mi Shuyi, Li Junhui, Wei Disheng, et al. 105 W continuous-wave diode-pumped Tm: YAP slab laser with high beam quality[J]. Optics & Laser Technology, 2021, 138: 106847. [44] Machan J P, Long W H, Zamel J, et al. 5.4 kW diode-pumped, 2.4x diffraction-limited Nd: YAG laser for material processing[C]//Advanced Solid State Lasers 2002. 2002: PD1. [45] McNaught S J, Komine H, Weiss S B, et al. 100 kW coherently combined slab MOPAs[C]//2009 Conference on Lasers and Electro-Optics and 2009 Conference on Quantum electronics and Laser Science Conference. 2009: 1-2. [46] Wang Dan, Du Yinglei, Wu Yingchen, et al. 20kW class high-beam-quality CW laser amplifier chain based on a Yb: YAG slab at room temperature[J]. Optics Letters, 2018, 43(16): 3838-3841. doi: 10.1364/OL.43.003838 [47] Huang Lei, Zheng Yamin, Guo Yading, et al. 21.2 kW, 1.94 times diffraction-limit quasi-continuous-wave laser based on a multi-stage, power-scalable and adaptive optics controlled Yb: YAG master-oscillator-power-amplifier system[J]. Chinese Optics Letters, 2020, 18: 061402. doi: 10.3788/COL202018.061402 [48] 郭亚丁. 高能固体激光自适应光学光束质量控制[C]//第四届大气光学及自适应光学技术发展研讨会. 2019Guo Yading. Beam quality control technology for high energy solid laser system[C]//The Fourth Symposium on the Development of Atmospheric Optics and Adaptive Optics. 2019 [49] 尚建力, 王君涛, 彭万敬, 等. 二极管泵浦高能激光研究进展和展望[J]. 强激光与粒子束, 2022, 34:011007 doi: 10.11884/HPLPB202234.210530Shang Jianli, Wang Juntao, Peng Wanjing, et al. Research progress and prospects of laser diode pumped high-energy laser[J]. High Power Laser and Particle Beams, 2022, 34: 011007 doi: 10.11884/HPLPB202234.210530 [50] Koester C J, Snitzer E. Amplification in a fiber laser[J]. Applied Optics, 1964, 3(10): 1182-1186. doi: 10.1364/AO.3.001182 [51] Dominic V, MacCormack S, Waarts R, et al. 110 W fiber laser[C]//Conference on Lasers and Electro-Optics 1999. 1999: CPD11/1-CPD11/2. [52] Jeong Y, Sahu J K, Payne D N, et al. Ytterbium-doped large-core fiber laser with 1.36 kW continuous-wave output power[J]. Optics Express, 2004, 12(25): 6088-6092. doi: 10.1364/OPEX.12.006088 [53] Ikoma S, Nguyen H K, Kashiwagi M, et al. 3 kW single stage all-fiber Yb-doped single-mode fiber laser for highly reflective and highly thermal conductive materials processing[C]//Proceedings of SPIE 10083, Fiber Lasers XIV: Technology and Systems. 2017: 100830Y. [54] Yang Baolai, Shi Chen, Zhang Hanwei, et al. Monolithic fiber laser oscillator with record high power[J]. Laser Physics Letters, 2018, 15: 075106. doi: 10.1088/1612-202X/aac19f [55] 奚小明, 王鹏, 杨保来, 等. 全光纤激光振荡器输出功率突破7kW[J]. 中国激光, 2021, 48:0116001 doi: 10.3321/j.issn.0258-7025.2021.1.zgjg202101023Xi Xiaoming, Wang Peng, Yang Baolai, et al. All-fiber laser oscillator reach 7kW output power[J]. Chinese Journal of Lasers, 2021, 48: 0116001 doi: 10.3321/j.issn.0258-7025.2021.1.zgjg202101023 [56] Shiner B. The impact of fiber laser technology on the world wide material processing market[C]//Proceedings of CLEO: Applications and Technology 2013. 2013. [57] 林傲祥, 湛欢, 彭昆, 等. 国产复合功能光纤实现万瓦激光输出[J]. 强激光与粒子束, 2018, 30:060101 doi: 10.11884/HPLPB201830.180110Lin Aoxiang, Zhan Huan, Peng Kun, et al. 10 kW-level pump-gain integrated functional laser fiber[J]. High Power Laser and Particle Beams, 2018, 30: 060101 doi: 10.11884/HPLPB201830.180110 [58] 陈晓龙, 楼风光, 何宇, 等. 高效率全国产化10 kW光纤激光器[J]. 光学学报, 2019, 39:0336001 doi: 10.3788/AOS201939.0336001Chen XIaolong, Lou Fengguang, He Yu, et al. Home-made 10 kW fiber laser with high efficiency[J]. Acta Optica Sinica, 2019, 39: 0336001 doi: 10.3788/AOS201939.0336001 [59] Yang Baolai, Zhang Hanwei, Wang Xiaolin, et al. Mitigating transverse mode instability in a single-end pumped all-fiber laser oscillator with a scaling power of up to 2 kW[J]. Journal of Optics, 2016, 18: 105803. doi: 10.1088/2040-8978/18/10/105803 [60] Fang Qiang, Li Jinhui, Shi Wei, et al. 5 kW near-diffraction-limited and 8 kW high-brightness monolithic continuous wave fiber lasers directly pumped by laser diodes[J]. IEEE Photonics Journal, 2017, 9: 1506107. [61] Shima K, Ikoma S, Uchiyama K, et al. 5-kW single stage all-fiber Yb-doped single-mode fiber laser for materials processing[C]//Proceedings of SPIE 10512, Fiber Lasers XV: Technology and Systems. 2018: 105120C. [62] Yang Baolai, Wang Peng, Zhang Hanwei, et al. 6 kW single mode monolithic fiber laser enabled by effective mitigation of the transverse mode instability[J]. Optics Express, 2021, 29(17): 26366-26374. doi: 10.1364/OE.433630 [63] Huang Zhimeng, Shu Qiang, Tao Rumao, et al. > 5kW record high power narrow linewidth laser from traditional step-index monolithic fiber amplifier[J]. IEEE Photonics Technology Letters, 2021, 33(21): 1181-1184. doi: 10.1109/LPT.2021.3112270 [64] Wang Xiaozhuo, Crump P, Wenzel H, et al. Root-cause analysis of peak power saturation in pulse-pumped 1100 nm broad area single emitter diode lasers[J]. IEEE Journal of Quantum Electronics, 2010, 46(5): 658-665. doi: 10.1109/JQE.2010.2047381 [65] Wenzel H, Crump P, Pietrzak A, et al. Theoretical and experimental investigations of the limits to the maximum output power of laser diodes[J]. New Journal of Physics, 2010, 12: 085007. doi: 10.1088/1367-2630/12/8/085007 [66] Morita T, Nagakura T, Torii K, et al. High-efficient and reliable broad-area laser diodes with a window structure[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2013, 19: 1502104. doi: 10.1109/JSTQE.2013.2245103 [67] Kaifuchi Y, Yamagata Y, Nogawa R, et al. Ultimate high power operation of 9xx-nm single emitter broad stripe laser diodes[C]//Proceedings of SPIE 10086, High-Power Diode Laser Technology XV. 2017: 100860D. [68] Gapontsev V, Moshegov N, Berezin I, et al. Highly-efficient high-power pumps for fiber lasers[C]//Proceedings of SPIE 10086, High-Power Diode Laser Technology XV. 2017: 1008604. [69] Ren Zhanqiang, Li Qingmin, Li Bo, et al. High wall-plug efficiency 808-nm laser diodes with a power up to 30.1 W[J]. Journal of Semiconductors, 2020, 41: 032901. doi: 10.1088/1674-4926/41/3/032901 [70] Virtanen H, Uusitalo T, Karjalainen M, et al. Narrow-Linewidth 780-nm DFB lasers fabricated using nanoimprint lithography[J]. IEEE Photonics Technology Letters, 2018, 30(1): 51-54. doi: 10.1109/LPT.2017.2772337 [71] Lewoczko-Adamczyk W, Pyrlik C, Häger J, et al. Ultra-narrow linewidth DFB-laser with optical feedback from a monolithic confocal Fabry-Perot cavity[J]. Optics Express, 2015, 23(8): 9705-9709. doi: 10.1364/OE.23.009705 [72] Codemard C A, Vukovic N T, Chan J S, et al. Resonant SRS filtering fiber for high power fiber laser applications[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2018, 24: 0901509. [73] Liu T, Yang Z M, Xu S H, et al. Analytical investigation on transient thermal effects in pulse end-pumped short-length fiber laser[J]. Optics Express, 2009, 17(15): 12875-12890. doi: 10.1364/OE.17.012875 [74] Dawson J W, Messerly M J, Heebner J E, et al. Power scaling analysis of fiber lasers and amplifiers based on non-silica materials[C]//Proceedings of SPIE 7686, Laser Technology for Defense and Security VI. 2010: 768611. [75] Augst S J, Fan T Y, Sanchez A. Coherent beam combining and phase noise measurements of ytterbium fiber amplifiers[J]. Optics Letters, 2004, 29(5): 474-476. doi: 10.1364/OL.29.000474 [76] Enloe L H, Rodda J L. Laser phase-locked loop[J]. Proceedings of the IEEE, 1965, 53(2): 165-166. doi: 10.1109/PROC.1965.3585 [77] Glova A F, Drobyazko S V, Likhanskii V V. Multi-beam CO2 lasers and theirs applications[C]//Proceedings of the 2nd International Conference on Advanced Optoelectronics and Lasers. 2005: 43-46. [78] Abramski K M, Colley A D, Baker H J, et al. Phase-locked CO2 laser array using diagonal coupling of waveguide channels[J]. Applied Physics Letters, 1992, 60(5): 530-532. doi: 10.1063/1.106597 [79] Hornby A M, Baker H J, Colley A D, et al. Phase locking of linear arrays of CO2 waveguide lasers by the waveguide-confined Talbot effect[J]. Applied Physics Letters, 1993, 63(19): 2591-2593. doi: 10.1063/1.110440 [80] Bernard J M, Chodzko R A, Mirels H. Coupled multiline CW HF lasers—Experimental performance[J]. AIAA Journal, 1988, 26(11): 1369-1372. doi: 10.2514/3.10049 [81] Redmond S M, Kansky J E, Creedon K J, et al. Active coherent combination of >200 semiconductor amplifiers using a SPGD algorithm[C]//Laser Science to Photonic Applications. 2011: 1-2. [82] Albrodt P, Niemeyer M, Crump P, et al. Coherent beam combining of high power quasi continuous wave tapered amplifiers[J]. Optics Express, 2019, 27(20): 27891-27901. doi: 10.1364/OE.27.027891 [83] Bogatov A P, Drakin A E, Mikaelyan G T. Coherent combining of diode laser beams in a master oscillator – zigzag slab power amplifier system[J]. Quantum Electronics, 2019, 49(11): 1014-1018. doi: 10.1070/QEL17086 [84] Schimmel G, Doyen I, Janicot S, et al. Passive coherent combining of two tapered laser diodes in an interferometric external cavity[C]//2015 IEEE High Power Diode Lasers and Systems Conference. 2015: 11-12. [85] Huang R K, Chann B, Burgess J, et al. Teradiode's high brightness semiconductor lasers[C]//Proceedings of SPIE 9730, Components & Packaging for Laser Systems II. 2016: 97300C. [86] Oka M, Masuda H, Kaneda Y, et al. Laser-diode-pumped phase-locked Nd: YAG laser arrays[J]. IEEE Journal of Quantum Electronics, 1992, 28(4): 1142-1147. doi: 10.1109/3.135239 [87] Kono Y, Takeoka M, Uto K, et al. A coherent all-solid-state laser array using the Talbot effect in a three-mirror cavity[J]. IEEE Journal of Quantum Electronics, 2000, 36(5): 607-614. doi: 10.1109/3.842103 [88] Marmo J, Injeyan H, Komine H, et al. Joint high power solid state laser program advancements at Northrop Grumman[C]//Proceedings of SPIE 7195, Fiber Lasers VI: Technology, Systems, and Applications. 2009: 719507. [89] Kienel M, Müller M, Demmler S, et al. Coherent beam combination of Yb: YAG single-crystal rod amplifiers[J]. Optics Letters, 2014, 39(11): 3278-3281. doi: 10.1364/OL.39.003278 [90] Huang Zhimeng, Tang Xuan, Zhang Dayong, et al. Phase locking of slab laser amplifiers via square wave dithering algorithm[J]. Applied Optics, 2014, 53(10): 2163-2169. doi: 10.1364/AO.53.002163 [91] Bourderionnet J, Bellanger C, Primot J, et al. Collective coherent phase combining of 64 fibers[J]. Optics Express, 2011, 19(18): 17053-17058. doi: 10.1364/OE.19.017053 [92] 常洪祥, 常琦, 侯天悦, 等. 百束规模光纤激光相干合成[J]. 中国激光, 2020, 47:0916002. [93] Ma Yanxing, Wang Xiaolin, Zhou Pu, et al. Coherent beam combination of 1.08 kW fiber amplifier array using single frequency dithering technique[J]. Optics and Lasers in Engineering, 2011, 49(8): 1089-1092. doi: 10.1016/j.optlaseng.2011.03.001 [94] Yu C X, Augst S J, Redmond S M, et al. Coherent combining of a 4 kW, eight-element fiber amplifier array[J]. Optics Letters, 2011, 36(14): 2686-2688. doi: 10.1364/OL.36.002686 [95] Huang Zhimeng, Tang Xuan, Luo Yongquan, et al. Active phase locking of thirty fiber channels using multilevel phase dithering method[J]. Review of Scientific Instruments, 2016, 87: 033109. doi: 10.1063/1.4943666 [96] Peng Yingnan, Hu Qiqi, Duan Jiazhu, et al. Active phase locking of laser coherent beam combination using square wave dithering algorithm[J]. Journal of Russian Laser Research, 2022, 43(5): 626-633. doi: 10.1007/s10946-022-10089-4 [97] Peng Y, Hu Q, Duan J, et al. Numerical and experimental study on rapidly varying phase-distortion correction using modified square wave dithering algorithm[J]. Laser Physics [98] 彭英楠, 胡奇琪, 段佳著, 等. 基于光斑二阶矩的阵列光束倾斜相差自适应控制方法[J]. 强激光与粒子束, 2023, 35:041010 doi: 10.11884/HPLPB202335.220312Peng Yingnan, Hu Qiqi, Duan Jiazhu, et al. Self-adaptiue tilt control method based on second order moment of beam for laser array[J]. High Power Laser and Particle Beams, 2023, 35: 041010 doi: 10.11884/HPLPB202335.220312 [99] 任国光, 伊炜伟, 齐予, 等. 美国战区和战略无人机载激光武器[J]. 激光与光电子学进展, 2017, 54:100002Ren Guoguang, Yi Weiwei, Qi Yu, et al. U. S. Theater and strategic UVA-borne laser weapon[J]. Laser & Optoelectronics Progress, 2017, 54: 100002 [100] Li Feng, Geng Chao, Huang Guan, et al. Experimental demonstration of coherent combining with tip/tilt control based on adaptive space-to-fiber laser beam coupling[J]. IEEE Photonics Journal, 2017, 9: 7102812. [101] Hou Tianyue, An Yi, Chang Qi, et al. Deep learning-based phase control method for coherent beam combining and its application in generating orbital angular momentum beams[J]. arXiv: 2019, 1903: 03986. [102] Azarian A, Bourdon P, Lombard L, et al. Orthogonal coding methods for increasing the number of multiplexed channels in coherent beam combining[J]. Applied Optics, 2014, 53(8): 1493-1502. doi: 10.1364/AO.53.001493 [103] McNaught S J, Thielen P A, Adams L N, et al. Scalable coherent combining of kilowatt fiber amplifiers into a 2.4-kW beam[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20: 0901008. [104] Shekel E, Vidne Y, Urbach B. 16kW single mode CW laser with dynamic beam for material processing[C]//Proceedings of SPIE 11260, Fiber Lasers XVII: Technology and Systems. 2020: 1126021. [105] 胡贞, 姜会林, 佟首峰, 等. 空间激光通信终端ATP技术与系统研究[J]. 兵工学报, 2011, 32(6):752-757Hu Zhen, Jiang Huilin, Tong Shoufeng, et al. Research on ATP system technology of laser communication terminal in space[J]. Acta Armamentarii, 2011, 32(6): 752-757 [106] Haellstig E, Stigwall J, Lindgren M, et al. Laser beam steering and tracking using a liquid crystal spatial light modulator[C]//Proceedings of SPIE 5087, Laser Systems Technology. 2003. [107] Apter B, Efron U, Bahat-Treidel E. On the fringing-field effect in liquid-crystal beam-steering devices[J]. Applied Optics, 2004, 43(1): 11-19. doi: 10.1364/AO.43.000011 [108] Abe H, Takeuchi M, Takeuchi G, et al. Two-dimensional beam-steering device using a doubly periodic Si photonic-crystal waveguide[J]. Optics Express, 2018, 26(8): 9389-9397. doi: 10.1364/OE.26.009389 [109] Tuantranont A, Bright V M, Zhang J, et al. Optical beam steering using MEMS-controllable microlens array[J]. Sensors and Actuators A: Physical, 2001, 91(3): 363-372. doi: 10.1016/S0924-4247(01)00609-4 [110] Mcmanamon P F, Dorschner T A, Corkum D L, et al. Optical phased array technology[J]. Proceedings of the IEEE, 1996, 84(2): 268-298. doi: 10.1109/5.482231 [111] Resler D P, Hobbs D S, Sharp R C, et al. High-efficiency liquid-crystal optical phased-array beam steering[J]. Optics Letters, 1996, 21(9): 689-691. doi: 10.1364/OL.21.000689 [112] 徐林. 液晶光学相控阵相位延迟及衍射效率研究[D]. 哈尔滨: 哈尔滨工业大学, 2008Xu Lin. Research on phase delay and diffraction efficiency of liquid crystal optical phased array[D]. Harbin: Harbin Institute of Technology, 2008 [113] Khan S A, Riza N A. Demonstration of 3-dimensional wide-angle no-moving-parts laser beam steering[C]//Proceedings of SPIE 5550, Free-Space Laser Communications IV. 2004. [114] Riza N A, Arain M A. Code-multiplexed optical scanner[J]. Applied Optics, 2003, 42(8): 1493-1502. doi: 10.1364/AO.42.001493 [115] Kim J, Oh C, Escuti M J, et al. Wide-angle nonmechanical beam steering using thin liquid crystal polarization gratings[C]//Proceedings of SPIE, 2008: 709302. [116] Whitaker B, Harris S R. A preliminary investigation into the effects of high-power illumination on optical phased arrays[R]. AFRL, 2010. [117] Gu D, Wen B, Mahajan M, et al. High power liquid crystal spatial light modulators[C]//Proceedings of SPIE 6306, Advanced Wavefront Control: Methods, Devices, and Applications IV. 2006: 630602. [118] 汪相如, 周庄奇. 液晶光学相控阵在高功率激光应用中的研究进展[J]. 红外与激光工程, 2018, 47:103006 doi: 10.3788/IRLA201847.0103006Wang Xiangru, Zhou Zhuangqi. Research progress of liquid crystal optical phased array in high power laser applications (invited)[J]. Infrared and Laser Engineering, 2018, 47: 103006 doi: 10.3788/IRLA201847.0103006 [119] 李阳龙, 王伟平, 骆永全, 等. 1 064 nm激光对氧化铟锡薄膜的损伤研究[J]. 高压物理学报, 2012, 26(1):107-112 doi: 10.11858/gywlxb.2012.01.016Li Yanglong, Wang Weiping, Luo Yongquan, et al. 1 064 nm laser damage on indium tin oxide films[J]. Chinese Journal of High Pressure Physics, 2012, 26(1): 107-112 doi: 10.11858/gywlxb.2012.01.016 [120] 罗飞, 骆永全, 张大勇, 等. ITO薄膜电极激光损伤形貌的多重分形研究[J]. 应用激光, 2010, 30(2):86-90 doi: 10.3788/AL20103002.0086Luo Fei, Luo Yongquan, Zhang Dayong, et al. Analysis of multi-fractal patterns of ITO films radiated by laser[J]. Applied Laser, 2010, 30(2): 86-90 doi: 10.3788/AL20103002.0086 [121] 骆永全, 张大勇, 张翠娟, 等. 液晶光学器件激光损伤研究[J]. 激光技术, 2010, 34(3):392-394Luo Yongquan, Zhang Dayong, Zhang Cuijuan, et al. Research of laser damage on liquid crystal optical elements[J]. Laser Technology, 2010, 34(3): 392-394 [122] 骆永全, 王伟平, 罗飞. 连续激光辐照下二氧化钒薄膜热致相变实验研究[J]. 强激光与粒子束, 2006, 18(5):713-716Luo Yongquan, Wang Weiping, Luo Fei. Experimental study on heating-induced phase transition of vanadium dioxide thin films irradiated by CW laser[J]. High Power Laser and Particle Beams, 2006, 18(5): 713-716 [123] Wang Haifeng, Huang Zhimeng, Zhang Dayong, et al. Thickness effect on laser-induced-damage threshold of indium-tin oxide films at 1064 nm[J]. Journal of Applied Physics, 2011, 110: 113111. doi: 10.1063/1.3665715 [124] Zhao Xiangjie, Liu Cangli, Duan Jiazhu, et al. Morphology effect on the light scattering and dynamic response of polymer network liquid crystal phase modulator[J]. Optics Express, 2014, 22(12): 14757-14768. doi: 10.1364/OE.22.014757 [125] Zhao Xiangjie, Liu Cangli, Zhang Dayong, et al. Direct investigation and accurate control of phase profile in liquid-crystal optical-phased array for beam steering[J]. Applied Optics, 2013, 52(29): 7109-7116. doi: 10.1364/AO.52.007109 [126] Zhao Xiangjie, Zhang Dayong, Luo Yongquan, et al. Numerical analysis and design of patterned electrode liquid crystal microlens array with dielectric slab[J]. Optics & Laser Technology, 2012, 44(6): 1834-1839. [127] Zhao Xiangjie, Liu Cangli, Zhang Dayong, et al. Modeling and design of an optimized patterned electrode liquid crystal microlens array with dielectric slab[J]. Optik, 2013, 124(23): 6132-6139. doi: 10.1016/j.ijleo.2013.04.082 [128] 陈一波, 沈浩, 段佳著, 等. 用于高功率密度光束控制的光寻址光阀研制[J]. 强激光与粒子束, 2023, 35:041012 doi: 10.11884/HPLPB202335.220203Chen Yibo, Shen Hao, Duan Jiazhu, et al. Development of optically addressed liquid crystal light valve for high power density beam control[J]. High Power Laser and Particle Beams, 2023, 35: 041012 doi: 10.11884/HPLPB202335.220203 [129] Jalali B, Fathpour S. Silicon photonics[J]. Journal of Lightwave Technology, 2007, 24(12): 4600-4615. [130] Trinh P D, Yegnanarayanan S, Coppinger F, et al. Silicon-on-insulator (SOI) phased-array wavelength multi/demultiplexer with extremely low-polarization sensitivity[J]. IEEE Photonics Technology Letters, 1997, 9(7): 940-942. doi: 10.1109/68.593358 [131] Phare C T, Shin M C, Miller S A, et al. Silicon optical phased array with high-efficiency beam formation over 180 degree field of view[J]. arXiv: , 1802, 04624: 2018. [132] Yaacobi A, Sun Jie, Moresco M, et al. Integrated phased array for wide-angle beam steering[J]. Optics Letters, 2014, 39(15): 4575-4578. doi: 10.1364/OL.39.004575 [133] Writers S. SWEEPER demonstrates wide-angle optical phased array technology[EB/OL]. (2015-05-25). https://www.spacedaily.com/reports/SWEEPER_Demonstrates_Wide_Angle_Optical_Phased_Array_Technology_999.html. [134] Chung S W, Abediasl H, Hashemi H. A monolithically integrated large-scale optical phased array in silicon-on-insulator CMOS[J]. IEEE Journal of Solid-State Circuits, 2018, 53(1): 275-296. doi: 10.1109/JSSC.2017.2757009 [135] Ma Weichao, Tan Su, Wang Kuankuan, et al. Practical two-dimensional beam steering system using an integrated tunable laser and an optical phased array[J]. Applied Optics, 2020, 59(32): 9985-9994. doi: 10.1364/AO.403314 [136] Yoo B W, Megens M, Sun Tianbo, et al. A 32 × 32 optical phased array using polysilicon sub-wavelength high-contrast-grating mirrors[J]. Optics Express, 2014, 22(16): 19029-19039. doi: 10.1364/OE.22.019029 [137] Poulton C V, Byrd M J, Moss B, et al. 8192-element optical phased array with 100° steering range and flip-chip CMOS[C]//CLEO: Applications and Technology 2020. 2020: JTh4A. 3. [138] Zhang Xiaosheng, Kwon K, Henriksson J, et al. A large-scale microelectromechanical-systems-based silicon photonics LiDAR[J]. Nature, 2022, 603(7900): 253-258. doi: 10.1038/s41586-022-04415-8 [139] 姜文汉. 自适应光学技术[J]. 自然杂志, 2006, 28(1):7-13 doi: 10.3969/j.issn.0253-9608.2006.01.002Jiang Wenhan. Adaptive optical technology[J]. Chinese Journal of Nature, 2006, 28(1): 7-13 doi: 10.3969/j.issn.0253-9608.2006.01.002 [140] Israel D J. Laser communications relay demonstration: introduction for experimenters[R]. NASA, 2017. [141] 闻传花, 李玉权. 星地激光通信中的自适应光学研究[C]//2006北京地区高校研究生学术交流会——通信与信息技术会议论文集(上). 2006Wen Chuanhua, Li Yuquan. Research on adaptive optics in satellite-to-ground laser communication[C]//2006 Academic Meeting for Postgraduates in Beijing Area—Communication and Information Technology Conference Proceedings. 2006 [142] Bridges W B, Brunner P T, Lazzara S P, et al. Coherent optical adaptive techniques[J]. Applied Optics, 1974, 13(2): 291-300. doi: 10.1364/AO.13.000291 [143] Vorontsov M A, Kolosov V. Target-in-the-loop beam control: basic considerations for analysis and wave-front sensing[J]. Journal of the Optical Society of America A, 2005, 22(1): 126-141. doi: 10.1364/JOSAA.22.000126 [144] Weyrauch T, Vorontsov M A, Carhart G W, et al. Experimental demonstration of coherent beam combining over a 7 km propagation path[J]. Optics Letters, 2011, 36(22): 4455-4457. doi: 10.1364/OL.36.004455 [145] Weyrauch T, Vorontsov M, Mangano J, et al. Deep turbulence effects mitigation with coherent combining of 21 laser beams over 7 km[J]. Optics Letters, 2016, 41(4): 840-843. doi: 10.1364/OL.41.000840 [146] Ma Yanxing, Zhou Pu, Tao Rumao, et al. Target-in-the-loop coherent beam combination of 100 W level fiber laser array based on an extended target with a scattering surface[J]. Optics Letters, 2013, 38(7): 1019-1021. doi: 10.1364/OL.38.001019 [147] 支冬. 光纤激光目标在回路相干合成技术研究[D]. 长沙: 国防科学技术大学, 2018Zhi Dong. Study on the target-in-the-loop coherent beam combination technology of fiber lasers[D]. Changsha: National University of Defense Technology, 2018 [148] 李枫, 邹凡, 姜佳丽, 等. 57孔径光纤激光相控阵自适应光学系统实现经2 km大气传输的目标在回路相干合成[J]. 中国激光, 2022, 49:0616002Li Feng, Zou Fan, Jiang Jiali, et al. Target-in-the-Loop in 2 km atmosphere based on 57-channel adaptive fiber laser optical phased array system[J]. Chinese Journal of Lasers, 2022, 49: 0616002 [149] Meinel A B. Cost-scaling laws applicable to very large optical telescopes[J]. Optical Engineering, 1979, 18: 186645. [150] 王海涛, 周必方. 光学综合孔径干涉成像技术[J]. 光学 精密工程, 2002, 10(5):434-442Wang Haitao, Zhou Bifang. Optical synthesis aperture interference image technology[J]. Optics and Precision Engineering, 2002, 10(5): 434-442 [151] Giesen P, Ouwerkerk B, van Brug H, et al. Mechanical setup for optical aperture synthesis for wide-field imaging[C]//Proceedings of SPIE 5528, Space Systems Engineering and Optical Alignment Mechanisms. 2004: 361-371. [152] 明名, 王建立, 张景旭, 等. 大口径望远镜光学系统的误差分配与分析[J]. 光学 精密工程, 2009, 17(1):104-108Ming Wang, Wang Jianli, Zhang Jingxu, et al. Error budget and analysis for optical system in large telescope[J]. Optics and Precision Engineering, 2009, 17(1): 104-108 [153] Carrara W G, Goodman R S, Majewski R M, Spotlight synthetic aperture radar: signal processing algorithms [J]. Journal of Atmospheric and Solar-Terrestrial Physics, 1997, 59(5): 597-599. [154] Hege E K, Beckers J M, Strittmatter P A, et al. Multiple mirror telescope as a phased array telescope[J]. Applied Optics, 1985, 24(16): 2565-2576. doi: 10.1364/AO.24.002565 [155] Beckers J M. VLT interferometer: III. Factors affecting wide field-of-view operation[C]//Proceedings of SPIE 1236, Advanced Technology Optical Telescopes IV. 1990. [156] Hill J M, Ashby D S, Brynnel J G, et al. The Large Binocular Telescope: binocular all the time[C]//Proceedings of SPIE 9145, Ground-based and Airborne Telescopes V. 2014: 914502. [157] Ricklin J, Schumm B, Dierking M, et al. Synthetic aperture ladar for tactical imaging (SALTI) (Briefing Charts)[R]. DARPA, 2007. [158] Krause B W, Buck J, Ryan C, et al. Synthetic aperture ladar flight demonstration[C]//CLEO: Applications and Technology 2011. 2011: PDPB7. [159] Tian He, Liu Zheng, Zeng Zheng, et al. An airborne inverse synthetic aperture ladar imaging method based on sparse sampling[J]. Procedia Computer Science, 2020, 174: 694-699. doi: 10.1016/j.procs.2020.06.144 [160] Lu Tianan, Huang Fei, Li Hongping. Neural network based synthetic aperture ladar imaging through marine atmosphere[J]. Optik, 2020, 219: 164975. doi: 10.1016/j.ijleo.2020.164975 -