Simulation study of the relationship between low-frequency communication EM wave transmissivity of plasma sheaths and irradiation microwave E-field strength
-
摘要: 高超声速飞行器飞行期间,由于表面激波的影响,飞行器表面会生成等离子体鞘套。等离子体鞘套会吸收、反射和散射电磁波,导致通信信号发生衰减甚至中断,从而形成“黑障”问题。理论上来说,等离子体鞘套与微波的相互作用随微波电场幅值的变化呈现非线性,所以可能存在一个合适的电场幅值和辐照时间区间,使等离子体鞘套的电磁波透射率上升。针对这种可能性,采用有限元分析方法,对飞行器表面等离子体鞘套流场与电磁场进行二维耦合仿真,得到微波照射后等离子体鞘套透射率的改变情况。分别使用电场幅值为5×104、1×105、2.5×105、5×105 V·m−1的微波对等离子体鞘套进行30 ns的辐照,在辐照后等离子体鞘套对1.2 GHz和1.6 GHz的电磁波的最大透射率提升,为解决“黑障”问题提供了新的可能。Abstract: During the flight of hypersonic vehicle, plasma sheath will be produced on the surface due to the influence of surface shockwave. Because the plasma sheath will absorb, reflect and scatter electromagnetic waves, the communication signal will be attenuated or even interrupted, causing “blackout” problem. Theoretically, the interaction between the plasma sheath and microwave is nonlinearly changing with electric field, so there may be a suitable E-field amplitude and irradiation time interval to make electromagnetic wave transmissivity rise. For this possibility, Finite Element Analysis is used to conduct a two-dimensional coupled simulation of the plasma sheath flow field and the electromagnetic field on the hypersonic vehicle’s surface, and the change of the plasma sheath transmissivity after microwave irradiation is obtained. The plasma sheath was irradiated for 30 ns with electric field of 5×104 V/m, 1×105 V/m, 2.5×105 V/m, 5×105 V/m, respectively. The maximum transmissivity to 1.2 GHz and 1.6 GHz electromagnetic waves is enhanced after irradiation. It provides a new possibility to solve the “blackout” problem.
-
Key words:
- hypersonic vehicle /
- plasma sheath /
- blackout /
- microwave /
- coupling simulation
-
表 1 化学反应式
Table 1. Chemical reaction
No. chemical equation 1,2,3 $\mathrm{N}_2+M_1^{\mathrm{a}} \rightleftharpoons \mathrm{N}+\mathrm{N}+M_1^{\mathrm{a}}$ 4,5 $\mathrm{N}_2+M_1^{\mathrm{b}} \rightleftharpoons \mathrm{N}+\mathrm{N}+M_1^{\mathrm{b}}$ 6,7,8 $\mathrm{O}_2+M_2^{\mathrm{a}} \rightleftharpoons \mathrm{O}+\mathrm{O}+M_2^{\mathrm{a}}$ 9,10 $\mathrm{O}_2+M_2^{\mathrm{b}} \rightleftharpoons \mathrm{O}+\mathrm{O}+M_2^{\mathrm{b}}$ 11,12,13 $\mathrm{NO}+M_3^{\mathrm{a}} \rightleftharpoons \mathrm{N}+\mathrm{O}+M_3^{\mathrm{a}}$ 14,15 $\mathrm{NO}+M_3^{\mathrm{b}} \rightleftharpoons \mathrm{N}+\mathrm{O}+M_3^{\mathrm{b}}$ 16 $\mathrm{N}_2+\mathrm{O} \rightleftharpoons \mathrm{NO}+\mathrm{N}$ 17 $\mathrm{NO}+\mathrm{O} \rightleftharpoons \mathrm{O}_2+\mathrm{N}$ 18 $\mathrm{N}+\mathrm{O} \rightleftharpoons \mathrm{NO}^{+}+\mathrm{e}^{-}$ 表 2 最大透射率
Table 2. Maximum transmissivity
frequency/GHz E/(kV·m−1) maximum transmissivity/% irradiation time/ns 1.2 0 21.0 0 1.2 50 71.1 30 1.2 100 73.3 30 1.2 250 70.4 26 1.2 500 46.5 2 1.6 0 27.7 0 1.6 50 71.8 30 1.6 100 73.7 30 1.6 250 70.7 24 1.6 500 46.0 2 -
[1] 龚旻, 谭杰, 李大伟, 等. 临近空间高超声速飞行器黑障问题研究综述[J]. 宇航学报, 2018, 39(10):1059-1070 doi: 10.3873/j.issn.1000-1328.2018.10.001Gong Min, Tan Jie, Li Dawen, et al. Review of blackout problems of near space hypersonic vehicles[J]. Journal of Astronautics, 2018, 39(10): 1059-1070 doi: 10.3873/j.issn.1000-1328.2018.10.001 [2] 徐茂格, 席文君. 近空间高超音速飞行器射频通信“黑障”研究[J]. 电讯技术, 2009, 49(10):49-52 doi: 10.3969/j.issn.1001-893x.2009.10.011Xu Maoge, Xi Wenjun. Study on blackout in near space hypersonic vehicle radio frequency communication[J]. Telecommunication Engineering, 2009, 49(10): 49-52 doi: 10.3969/j.issn.1001-893x.2009.10.011 [3] Blazek J. Computational fluid dynamics: principles and applications[M]. 3rd ed. Britain: Butterworth-Heinemann, 2015: 20-57. [4] Ouyang Wenchong, Liu Yanming. Impact of ionization rate on the transmission of electromagnetic wave in realistic plasma[J]. Physics of Plasmas, 2020, 27: 033507. doi: 10.1063/1.5135607 [5] Bian Zheng, Li Jiangting, Guo Lixin. Simulation and feature extraction of the dynamic electromagnetic scattering of a hypersonic vehicle covered with plasma sheath[J]. Remote Sensing, 2020, 12: 2740. doi: 10.3390/rs12172740 [6] 梁晓庚, 田宏亮. 临近空间高超声速飞行器发展现状及其防御问题分析[J]. 航空兵器, 2016(4):3-10 doi: 10.19297/j.cnki.41-1228/tj.2016.04.001Liang Xiaogeng, Tian Hongliang. Analysis of the development status and the defense problem of near space hypersonic vehicle[J]. Aero Weaponry, 2016(4): 3-10 doi: 10.19297/j.cnki.41-1228/tj.2016.04.001 [7] 于哲峰, 刘佳琪, 刘连元, 等. 临近空间高超声速飞行器RCS特性研究[J]. 宇航学报, 2014, 35(6): 713-719Yu Zhefeng, Liu Jiaqi, Liu Lianyuan, et al. Research on the RCS characteristics of hypersonic near space vehicle[J]. Journal of Astronautics, 35(6): 713-719 [8] 于哲峰, 孙良奎, 马平, 等. 黑障对通信安全的影响及几种可能的解决方案[J]. 红外, 2017, 38(2):39-45 doi: 10.3969/j.issn.1672-8785.2017.02.007Yu Zhefeng, Sun Liangkui, Ma Ping, et al. Influence of blackout on communication security and several possible solutions[J]. Infrared, 2017, 38(2): 39-45 doi: 10.3969/j.issn.1672-8785.2017.02.007 [9] Ouyang Wenchong, Jin Tao, Wu Zhengwei, et al. Study of terahertz wave propagation in realistic plasma sheath for the whole reentry process[J]. IEEE Transactions on Plasma Science, 2021, 49(1): 460-465. doi: 10.1109/TPS.2020.3042220 [10] Sternberg N, Smolyakov A I. Resonant transmission of electromagnetic waves in multilayer dense-plasma structures[J]. IEEE Transactions on Plasma Science, 2009, 37(7): 1251-1260. doi: 10.1109/TPS.2009.2020399 [11] Hodara H. The use of magnetic fields in the elimination of the re-entry radio blackout[J]. Proceedings of the IRE, 1961, 49(12): 1825-1830. doi: 10.1109/JRPROC.1961.287709 [12] Shashurin A, Zhuang T, Teel G, et al. Laboratory modeling of the plasma layer at hypersonic flight[J]. Journal of Spacecraft and Rockets, 2014, 51(3): 838-846. doi: 10.2514/1.A32771 [13] Keidar M, Kim M, Boyd I D. Electromagnetic reduction of plasma density during atmospheric reentry and hypersonic flights[J]. Journal of Spacecraft and Rockets, 2008, 45(3): 445-453. doi: 10.2514/1.32147 [14] Li Ji, He Mang, Li Xiuping, et al. Multiphysics modeling of electromagnetic wave-hypersonic vehicle interactions under high-power microwave illumination: 2-D case[J]. IEEE Transactions on Antennas and Propagation, 2018, 66(7): 3653-3664. doi: 10.1109/TAP.2018.2835300 [15] Li Zhigang, Yuan Zhongcai, Wang Jiachun, et al. Simulation of propagation of the HPM in the low-pressure argon plasma[J]. Plasma Science and Technology, 2017, 20: 025401. [16] Kundrapu M, Loverich J, Beckwith K, et al. Modeling radio communication blackout and blackout mitigation in hypersonic vehicles[J]. Journal of Spacecraft and Rockets, 2015, 52(3): 853-862. doi: 10.2514/1.A33122 [17] 韦毅. 高超飞行器等离子体鞘套的多场耦合数值研究[D]. 哈尔滨: 哈尔滨工业大学, 2017: 18-25Wei Y. Multi-field coupling numerical study on plasmasonic sheath of hypersonic flying craft[D]. Harbin: Harbin Institute of Technology, 2017: 18-25. -