Gain degeneration and maintance project of 400 mm aperture disk amplifier
-
摘要: 400 mm口径片状放大器增益性能退化是国内外惯性约束聚变(ICF)激光装置长期运行所面临的主要问题之一,直接影响激光装置的输出能力与光束质量。对造成片状放大器增益退化的因素开展了分析,建立了各因素的归一化理论分析模型,并利用2组九片长的400 mm口径4×2组合式片状放大器系统开展了实验研究,无维护策略条件下经过10年、3 000发次运行后增益性能平均退化了10.2%,符合理论预期。以此制定了大口径片状放大器的维护策略,实现了系统长期的增益性能退化率优于1.5%,满足ICF激光装置长期运行要求。Abstract: One of the main problems occur during inertial confinement fusion (ICF) laser facility’s long-term operation is the gain degeneration of the 400 mm aperture slab amplifier,which will affect the output of the facility and the laser beam quality. A study on gain degeneration causing by several factors was carried out and a normalization theory model from all the factors has been built. The test was accomplished on two groups of 400 mm aperture, 4×2 composition multi-segment slab amplifier with each group includes 9 slabs. The gain degenerating rate was about 10.2% after 10 years, 3 000 shots of work which is in accordance with the theoretical predication. A maintance project for the large aperture slab amplifier has been drawn up to keep the gain degeneration less than 1.5% during long-term operation of the ICF facility.
-
Key words:
- inertial confinement fusion /
- slab amplifier /
- gain degenerate /
- maintance
-
表 1 氙灯电光转换效率随发次变化
Table 1. Change of flashlamp electro-optical conversion efficiency with shots
flashlamp
issueinitial
efficiency/%efficiency after
3000 shots/%drop
rate/%1,2 79.21 77.51 −2.13 3,4 79.02 77.67 −1.68 5,6 81.11 79.61 −1.85 7,8 79.68 78.81 −1.13 -
[1] Kramer D. National Ignition Facility surpasses long-awaited fusion milestone[EB/OL]. (2022-12-13)[2022-12-13]. https://pubs.aip.org/physicstoday/online/41898/National-Ignition-Facility-surpasses-long-awaited?searchresult=1. [2] Besnard D. The Megajoule Laser—A high-energy-density physics facility[M]//Schwoerer H, Beleites B, Magill J. Lasers and Nuclei. Berlin: Springer, 2006: 67-77. [3] 贺少勃, 陈远斌, 於海武, 等. 高功率激光放大器中的能量传输[J]. 中国激光, 2006, 33(S1):276-279He Shaobo, Chen Yuanbin, Yu Haiwu, et al. Energy transmission in high power laser amplifier[J]. Chinese Journal of Lasers, 2006, 33(S1): 276-279 [4] 彭志涛, 景峰, 刘兰琴, 等. 片状放大器小信号噪声增益功率谱的理论计算[J]. 强激光与粒子束, 2000, 12(S1):171-174Peng Zhitao, Jing Feng, Liu Lanqin, et al. Calculation of the power growth of small scale ripple for slab amplifiers[J]. High Power Laser and Particle Beams, 2000, 12(S1): 171-174 [5] Hammon J, Fulkerson E S, Smith D L, et al. Predicted pulsed-power/flash-lamp performance of the NIF main amplifier[C]//Digest of Technical Papers. 12th IEEE International Pulsed Power Conference. 1999: 910-913. [6] Trenholme J H, Emmett J L. Xenon flashlamp model for performance prediction[M]//Hyzen W G, Chase W G. Proceedings of Ninth International Conference on High Speed Photograph. New York: Society of Motion Picture and Television Engineers, 1970: 299-302. [7] Markiewicz J P, Emmett J L. Design of flashlamp driving circuits[J]. IEEE Journal of Quantum Electronics, 1966, 2(11): 707-711. doi: 10.1109/JQE.1966.1073757 [8] Holzrichter J F, Emmett J L. Design and analysis of a high brightness axial flash lamp[J]. Applied Optics, 1969, 8(7): 1459-1465. doi: 10.1364/AO.8.001459 -