Two-electron resonance absorption model of laser-semiconductor interaction
-
摘要: 通过提出双电子共振吸收模型,解释了激光与半导体材料相互作用时材料吸收光子的物理机制,分析了温度、掺杂数密度对吸收系数的影响;结合热峰模型,将激光的能量注入视为热源,计算出了激光入射时材料中电子温度的时空演化,通过费米狄拉克分布计算出自由电荷数密度分布,得到了电荷激发过程的计算模型,模拟了激光诱发单粒子翻转的过程。模拟结果表明,激光能量与激发电荷总量的关系是非线性的,这意味着激光能量与粒子的线性能量传输之间为非线性对应关系,与实验结果相符。Abstract: This work proposes a two-electron resonance absorption (TERA) model, which explains the reason for laser-induced single event upset (SEU): when the energy of a single photon is not enough to excite the electron-hole pair, there will be de-excitation from a free-electron with higher energy in the conduction band to provide extra energy to excite the electrons in the valence band to the conductive band. This model can explain the physical mechanism of the material’s absorption of photons in the laser-semiconductor material interaction and explain the effect of the ambient temperature and doping concentration of the material on the absorption coefficient through the importance of the concentration of high-energy electrons in the conduction band for TERA. In our simulation, we use laser as the energy source for the thermal spike model, and the spatial-temporal evolution of the electronic temperature in the material during the laser radiation is simulated. Therefore, the change in absorption coefficient can be explained by the TERA. Moreover, according to the Fermi-Dirac distribution, the free charge density is calculated by the electronic temperature of the material. Furthermore, the accumulated free charge induced by laser radiation is given by the integration over the whole volume of the material. Thus, the numerical solution of the charge excitation process is obtained, through which the total amount of excitation charge when the laser induces SEU can be calculated. The simulation results show that the relationship between laser energy and the total excitation charge is nonlinear, i.e., there is a nonlinear correspondence between laser energy and the linear energy transport of particles, which is consistent with the experimental results.
-
表 1 模拟中使用的激光参数
Table 1. Laser parameters used in the simulation
wavelength/nm pulse width/ps laser energy/pJ spot diameter/μm absorption coefficient (intrinsic silicon)/μm−1 1064 25 523 1.6 0.00143 -
[1] Buchner S P, Miller F, Pouget V, et al. Pulsed-laser testing for single-event effects investigations[J]. IEEE Transactions on Nuclear Science, 2013, 60(3): 1852-1875. doi: 10.1109/TNS.2013.2255312 [2] Hales J M, Khachatrian A, Buchner S, et al. New approach for pulsed-laser testing that mimics heavy-ion charge deposition profiles[J]. IEEE Transactions on Nuclear Science, 2020, 67(1): 81-90. doi: 10.1109/TNS.2019.2950431 [3] Hales J M, Khachatrian A, Buchner S, et al. Mapping the spatial dependence of charge-collection efficiency in semiconductor devices using pulsed-laser testing[J]. IEEE Transactions on Nuclear Science, 2021, 68(5): 617-625. doi: 10.1109/TNS.2021.3049651 [4] Hales J M, Khachatrian A, Ildefonso A, et al. Pulsed-laser testing to quantitatively evaluate latchup sensitivity in mixed-signal ASICs[J]. IEEE Transactions on Nuclear Science, 2022, 69(3): 429-435. doi: 10.1109/TNS.2021.3129416 [5] Habing D H. The use of lasers to simulate radiation-induced transients in semiconductor devices and circuits[J]. IEEE Transactions on Nuclear Science, 1965, 12(5): 91-100. doi: 10.1109/TNS.1965.4323904 [6] Buchner S P, Wilson D, Kang K, et al. Laser simulation of single event upsets[J]. IEEE Transactions on Nuclear Science, 1987, 34(6): 1227-1233. doi: 10.1109/TNS.1987.4337457 [7] Richter A K, Arimura I. Simulation of heavy charged particle tracks using focused laser beams[J]. IEEE Transactions on Nuclear Science, 1987, 34(6): 1234-1239. doi: 10.1109/TNS.1987.4337458 [8] Hales J M, Khachatrian A, Buchner S, et al. Using two-photon absorption pulsed-laser excitation to simulate radiation effects in microelectronics[C]//Proceedings of 2018 Conference on Lasers and Electro-Optics. 2018. [9] Ildefonso A, Fleetwood Z E, Tzintzarov G N, et al. Optimizing optical parameters to facilitate correlation of laser- and heavy-ion-induced single-event transients in SiGe HBTs[J]. IEEE Transactions on Nuclear Science, 2019, 66(1): 359-367. doi: 10.1109/TNS.2018.2882821 [10] Hales J M, Khachatrian A, Roche N J H, et al. Simulation of laser-based two-photon absorption induced charge carrier generation in silicon[J]. IEEE Transactions on Nuclear Science, 2015, 62(4): 1550-1557. doi: 10.1109/TNS.2015.2422793 [11] Shangguan Shipeng, Ma Yingqi, Han Jianwei, et al. Single event effects of SiC diode demonstrated by pulsed-laser two photon absorption[J]. Microelectronics Reliability, 2021, 125: 114364. doi: 10.1016/j.microrel.2021.114364 [12] 韩建伟, 上官士鹏, 马英起, 等. 脉冲激光模拟空间载荷单粒子效应研究进展[J]. 深空探测学报, 2017, 4(6):577-584 doi: 10.15982/j.issn.2095-7777.2017.12.012Han Jianwei, Shangguan Shipeng, Ma Yingqi, et al. Research progress for single event effects of space payloads by pulsed laser simulation[J]. Journal of Deep Space Exploration, 2017, 4(6): 577-584 doi: 10.15982/j.issn.2095-7777.2017.12.012 [13] 胡希伟. 等离子体理论基础[M]. 北京: 北京大学出版社, 2006Hu Xiwei. Fundamentals of plasma theory[M]. Beijing: Peking University Press, 2006 [14] Green M A. Self-consistent optical parameters of intrinsic silicon at 300 K including temperature coefficients[J]. Solar Energy Materials and Solar Cells, 2008, 92(11): 1305-1310. doi: 10.1016/j.solmat.2008.06.009 [15] 黄建国, 韩建伟. 脉冲激光模拟单粒子效应的等效LET计算[J]. 中国科学 G辑:物理学 力学 天文学, 2005, 48(1):113-121Huang Jianguo, Han Jianwei. Calculation of LET in SEE simulation by pulsed laser[J]. Science in China (Series G), 2005, 48(1): 113-121 [16] 刘恩科, 朱秉升, 罗晋生. 半导体物理学[M]. 7版. 北京: 电子工业出版, 2011Liu Enke, Zhu Bingsheng, Luo Jinsheng. The physics of semiconductors[M]. 7th ed. Beijing: Publishing House of Electronics Industry, 2011 [17] Batani D, Joachain C J, Martellucci S. Atoms and plasmas in super-intense laser fields[M]. Bologna: Società Italiana di Fisica, 2004. [18] 王竹勤, 兰生. 局部热力学平衡状态下的等离子体电导率计算[J]. 原子与分子物理学报, 2015, 32(2):259-263 doi: 10.3969/j.issn.1000-0364.2015.02.014Wang Zhuqin, Lan Sheng. Electrical conductivity simulation of plasma based on local thermodynamic equilibrium[J]. Journal of Atomic and Molecular Physics, 2015, 32(2): 259-263 doi: 10.3969/j.issn.1000-0364.2015.02.014 [19] 管明, 郭红霞, 陈哲浩, 等. 单粒子效应的物理过程模拟[J]. 现代应用物理, 2019, 10:030602Guan Ming, Guo Hongxia, Chen Zhehao, et al. Physical process simulation of single event effect[J]. Modern Applied Physics, 2019, 10: 030602 [20] Chettah A, Kucal H, Wang Z G, et al. Behavior of crystalline silicon under huge electronic excitations: a transient thermal spike description[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2009, 267(16): 2719-2724. doi: 10.1016/j.nimb.2009.05.063 [21] Lazanu I, Lazanu S. Contribution of the electron-phonon interaction to Lindhard energy partition at low energy in Ge and Si detectors for astroparticle physics applications[J]. Astroparticle Physics, 2016, 75: 44-54. doi: 10.1016/j.astropartphys.2015.09.007 [22] 侯明东, 甄红楼, 张庆祥, 等. 重离子在半导体器件中引起的单粒子效应[J]. 原子核物理评论, 2000, 17(3):165-170Hou Mingdong, Zhen Honglou, Zhang Qingxiang, et al. Single event effects induced by heavy ion in semiconductor device[J]. Nuclear Physics Review, 2000, 17(3): 165-170 -