Research progress of spatiotemporal mode-locked laser based on multimode fiber
-
摘要:
介绍了时空锁模的基本原理和时空锁模的理论模型−吸引子解剖。从空间结构和全光纤结构两方面介绍了近年来国内外在时空锁模光纤激光器方面的研究进展,包括激光腔型的改进、输出性能的提升和实时动力学的观测等。最后分析了目前时空锁模激光器的优势和不足,并对其发展方向进行了展望:时空锁模激光器在产生高功率超短脉冲方面有着巨大的优势,但输出光斑质量差在一定程度上限制了它的实际应用;利用时空自相似演化、波前整形等技术提升光束质量将是未来时空锁模激光器的发展方向。
Abstract:This paper introduces the basic principle of spatiotemporal mode-locking (STML) and the theoretical model of STML—attractor dissection. It presents the recent research progress about STML fiber laser from two aspects of spatial optical structures and all-fiber structures, including the improvement of laser cavity type, the enhancement of output performance, and the observation of real-time dynamics, etc. The advantage and insufficiency of the current STML laser are analyzed, and the development direction is forecasted: STML laser possesses great potential in generating high-power and ultrashort pulse, but to some extent, the poor quality of output modes hinders its application; improving the beam quality by self-similar evolution, wavefront shaping, etc. will be the direction to develop STML laser in the future.
-
表 1 空间结构时空锁模光纤激光器研究进展
Table 1. Research progress of STML fiber lasers with spatial structures
year research
groupgain fiber, core/cladding
diameter/μmGIMF, core/cladding
diameter/μmoutput
wavelength/nmpulse
durationpulse
energy/nJreference 2017 Cornell University Yb-doped
10/12550/125 1030 150 fs 5~40 [33] 2018 Tsinghua University Yb-doped
10/12550/125 1030 4.15 ps 4.1 [41] 2019 Tsinghua University Yb-doped
10/12550/125 1030 2.4 ps 1.5 [42] 2021 Tsinghua University Yb-doped
20/12550/125 1030 − − [43] 2021 Tsinghua University Yb-doped
20/12550/125 1030 5 ns 1.0~2.6 [46] 2021 Tsinghua University Yb-doped
20/12550/125 1030 1.88 ns 3.08 [49] 2021 South China University
of TechnologyYb-doped
20/12550/125 1030 − − [45] 2019 Polytechnique Fédérale
de LausanneYb-doped
10/12550/125 1030 2.3 ps 2.4 [50] 2020 Polytechnique Fédérale
de LausanneYb-doped
10/12550/125 1030 <100 fs 24 [51] 2020 California Institute
of TechnologyYb-doped
25/25062.5/250 1060 − − [52] 2022 Xiamen University Pr/Yb-doped
ZBLAN
5/25− 635 9 ps 4 [53] 表 2 全光纤时空锁模光纤激光器研究进展
Table 2. Research progress of all-fiber STML fiber lasers
year research
groupgain fiber, core/cladding
diameter/μmPulse
durationpulse
energy/nJmode-locked
typeMMI
typereference 2020 Polytechnique Fédérale de Lausanne Yb-doped
10/1256.24 ps 0.5 NPE F-M-F [55] 2020 South China Normal University Yb-doped
10/1254.29 ps − SESAM M-F-M [57] 2021 South China Normal University Yb-doped
10/1255.26 ps − SESAM M-F-M [58] 2021 South China Normal University Er-doped
20/12516.14 ps − SESAM M-F-M [59] 2021 South China Normal University Yb-doped
10/1254.81 ps 0.195 NALM NALM [60] 2022 South China Normal University Er-doped
20/125970 fs − NALM A-P [61] 2022 Changchun University of Science
and TechnologyYb-doped
10/1255.65 ps 6 NPR F-M-F [62] 2022 Beijing Jiaotong University Yb-doped
10/12520.1 ps 8 NPR F-M-F [63] 2022 China Jiliang University Er-doped
7/125630.5 fs 0.65 S-M-S S-M-S [64] 2021 University of Science and
Technology of ChinaYb-doped
10/12533.28 ps 11.67 NPR M-F-M [66] -
[1] Kerse C, Kalaycıoğlu H, Elahi P, et al. Ablation-cooled material removal with ultrafast bursts of pulses[J]. Nature, 2016, 537(7618): 84-88. doi: 10.1038/nature18619 [2] Bailey G W, Price R L, Voelkl E, et al. Applications of the SESAM in materials science[J]. Microscopy and Microanalysis, 2001, 7(S2): 1126-1127. doi: 10.1017/S1431927600031706 [3] Zhao Kangjun, Gao Chenxin, Xiao Xiaosheng, et al. Buildup dynamics of asynchronous vector solitons in a polarization-multiplexed dual-comb fiber laser[J]. Optics Letters, 2020, 45(14): 4040-4043. doi: 10.1364/OL.398323 [4] Chen Jie, Zhao Xin, Yao Zijun, et al. Dual-comb spectroscopy of methane based on a free-running Erbium-doped fiber laser[J]. Optics Express, 2019, 27(8): 11406-11412. doi: 10.1364/OE.27.011406 [5] Bai Xue, Ma Jun, Li Xu, et al. Focus-tunable fiber-laser ultrasound sensor for high-resolution linear-scanning photoacoustic computed tomography[J]. Applied Physics Letters, 2020, 116: 153701. doi: 10.1063/5.0006248 [6] Letokhov V S. Laser biology and medicine[J]. Nature, 1985, 316(6026): 325-330. doi: 10.1038/316325a0 [7] Brasch V, Geiselmann M, Herr T, et al. Photonic chip-based optical frequency comb using soliton Cherenkov radiation[J]. Science, 2016, 351(6271): 357-360. doi: 10.1126/science.aad4811 [8] Wang Heming, Lu Yukun, Wu Lue, et al. Dirac solitons in optical microresonators[J]. Light: Science & Applications, 2020, 9: 205. [9] Goda K, Jalali B. Dispersive Fourier transformation for fast continuous single-shot measurements[J]. Nature Photonics, 2013, 7(2): 102-112. doi: 10.1038/nphoton.2012.359 [10] Tang Haocheng, Men Ting, Liu Xianglei, et al. Single-shot compressed optical field topography[J]. Light: Science & Applications, 2022, 11: 244. [11] Strickland D, Mourou G. Compression of amplified chirped optical pulses[J]. Optics Communications, 1985, 56(3): 219-221. doi: 10.1016/0030-4018(85)90120-8 [12] Cho C Y, Huang Y P, Su K W. The energy scaling in a side-pumped ultra-low-magnification unstable resonator by employing a compact master oscillator power amplifier[J]. Applied Physics B, 2016, 122: 261. [13] Liu Bin, Liu Chong, Shen Lifeng, et al. Beam quality management by periodic reproduction of wavefront aberrations in end-pumped Nd: YVO4 laser amplifiers[J]. Optics Express, 2016, 24(8): 8988-8996. doi: 10.1364/OE.24.008988 [14] Dong Xiaolin, Xiao Hu, Xu Shanhui, et al. 122-W high-power single-frequency MOPA fiber laser in all-fiber format[J]. Chinese Optics Letters, 2011, 9: 111404. doi: 10.3788/COL201109.111404 [15] Chen Shuo, Liu Yuanyuan, Jin Zhen, et al. Asymmetry core effects in multimode fibers for space-division multiplexing[J]. Journal of the Optical Society of America B, 2021, 38(11): 3309-3318. doi: 10.1364/JOSAB.431198 [16] Richardson D J, Fini J M, Nelson L E. Space-division multiplexing in optical fibres[J]. Nature Photonics, 2013, 7(5): 354-362. doi: 10.1038/nphoton.2013.94 [17] Hofmann P, Mafi A, Jollivet C, et al. Detailed investigation of mode-field adapters utilizing multimode-interference in graded index fibers[J]. Journal of Lightwave Technology, 2012, 30(14): 2289-2298. doi: 10.1109/JLT.2012.2196406 [18] Fabert M, Săpânțan M, Krupa K, et al. Coherent combining of self-cleaned multimode beams[J]. Scientific Reports, 2020, 10: 20481. doi: 10.1038/s41598-020-77505-0 [19] Leventoux Y, Parriaux A, Sidelnikov O, et al. Highly efficient few-mode spatial beam self-cleaning at 1.5μm[J]. Optics Express, 2020, 28(10): 14333-14344. doi: 10.1364/OE.392081 [20] Mangini F, Gervaziev M, Ferraro M, et al. Statistical mechanics of beam self-cleaning in GRIN multimode optical fibers[J]. Optics Express, 2022, 30(7): 10850-10865. doi: 10.1364/OE.449187 [21] Chen Jikai, Wang Zhaokun, Li Liujiang, et al. GIMF-based SA for generation of high pulse energy ultrafast solitons in a mode-locked linear-cavity fiber laser[J]. Journal of Lightwave Technology, 2020, 38(6): 1480-1485. doi: 10.1109/JLT.2019.2954828 [22] Leventoux Y, Granger G, Krupa K, et al. Frequency-resolved spatial beam mapping in multimode fibers: application to mid-infrared supercontinuum generation[J]. Optics Letters, 2021, 46(15): 3717-3720. doi: 10.1364/OL.428623 [23] Ahsan A S, Agrawal G P. Graded-index solitons in multimode fibers[J]. Optics Letters, 2018, 43(14): 3345-3348. doi: 10.1364/OL.43.003345 [24] Osman M S. On multi-soliton solutions for the (2+1)-dimensional breaking soliton equation with variable coefficients in a graded-index waveguide[J]. Computers & Mathematics with Applications, 2018, 75(1): 1-6. [25] Wang Xiaoyue, Peng Junsong, Huang Kun, et al. Experimental study on buildup dynamics of a harmonic mode-locking soliton fiber laser[J]. Optics Express, 2019, 27(20): 28808-28815. doi: 10.1364/OE.27.028808 [26] Eslami Z, Ryczkowski P, Amiot C, et al. High-power short-wavelength infrared supercontinuum generation in multimode fluoride fiber[J]. Journal of the Optical Society of America B, 2019, 36(2): A72-A78. doi: 10.1364/JOSAB.36.000A72 [27] Lopez-Galmiche G, Eznaveh Z S, Eftekhar M A, et al. Visible supercontinuum generation in a graded index multimode fiber pumped at 1064 nm[J]. Optics Letters, 2016, 41(11): 2553-2556. doi: 10.1364/OL.41.002553 [28] Deng Zhixiang, Chen Yu, Liu Jun, et al. Emission of multiple resonant radiations by spatiotemporal oscillation of multimode dark pulses[J]. Optics Express, 2019, 27(24): 36022-36033. doi: 10.1364/OE.27.036022 [29] Chekhovskoy I S, Rubenchik A M, Shtyrina O V, et al. Nonlinear discrete wavefront shaping for spatiotemporal pulse compression with multicore fibers[J]. Journal of the Optical Society of America B, 2018, 35(9): 2169-2175. doi: 10.1364/JOSAB.35.002169 [30] Auston D. Transverse mode locking[J]. IEEE Journal of Quantum Electronics, 1968, 4(6): 420-422. doi: 10.1109/JQE.1968.1075357 [31] Smith P W. Simultaneous phase-locking of longitudinal and transverse laser modes[J]. Applied Physics Letters, 1968, 13(7): 235-237. doi: 10.1063/1.1652586 [32] Côté D, Van Driel H M. Period doubling of a femtosecond Ti: sapphire laser by total mode locking[J]. Optics Letters, 1998, 23(9): 715-717. doi: 10.1364/OL.23.000715 [33] Wright L G, Christodoulides D N, Wise F W. Spatiotemporal mode-locking in multimode fiber lasers[J]. Science, 2017, 358(6359): 94-97. doi: 10.1126/science.aao0831 [34] Wright L G, Sidorenko P, Pourbeyram H, et al. Mechanisms of spatiotemporal mode-locking[J]. Nature Physics, 2020, 16(5): 565-570. doi: 10.1038/s41567-020-0784-1 [35] Su Ning, Li Pingxue, Yao Chuanfei, et al. Passively mode-locked Yb-doped all-fiber oscillator operating at 979 nm and 1032 nm with the single wall carbon nanotubes as SA[J]. Optik, 2019, 198: 163282. doi: 10.1016/j.ijleo.2019.163282 [36] Cui Yudong, Liu Xueming. Graphene and nanotube mode-locked fiber laser emitting dissipative and conventional solitons[J]. Optics Express, 2013, 21(16): 18969-18974. doi: 10.1364/OE.21.018969 [37] Gong Ning, Hu Xuewen, Fang Tiantian, et al. Transition metals embedded siloxene as single-atom catalyst for advanced sulfur host in lithium–sulfur batteries: a theoretical study[J]. Advanced Energy Materials, 2022, 12: 2201530. doi: 10.1002/aenm.202201530 [38] Doran N J, Wood D. Nonlinear-optical loop mirror[J]. Optics Letters, 1988, 13(1): 56-58. doi: 10.1364/OL.13.000056 [39] Fermann M E, Haberl F, Hofer M, et al. Nonlinear amplifying loop mirror[J]. Optics Letters, 1990, 15(13): 752-754. doi: 10.1364/OL.15.000752 [40] Liu Yusong, Luo Yiyang, Xia Ran, et al. Internal motions of harmonically mode-locked soliton molecules in a NPR based fiber laser[J]. Optics Communications, 2021, 486: 126790. doi: 10.1016/j.optcom.2021.126790 [41] Qin Huaqiang, Xiao Xiaosheng, Wang Pan, et al. Observation of soliton molecules in a spatiotemporal mode-locked multimode fiber laser[J]. Optics Letters, 2018, 43(9): 1982-1985. doi: 10.1364/OL.43.001982 [42] Ding Yihang, Xiao Xiaosheng, Wang Pan, et al. Multiple-soliton in spatiotemporal mode-locked multimode fiber lasers[J]. Optics Express, 2019, 27(8): 11435-11446. doi: 10.1364/OE.27.011435 [43] Ding Yihang, Xiao Xiaosheng, Liu Kewei, et al. Spatiotemporal mode-locking in lasers with large modal dispersion[J]. Physical Review Letters, 2021, 126: 093901. doi: 10.1103/PhysRevLett.126.093901 [44] Nan Suqin, Bai Yanfeng, Huang Xianwei, et al. The unified imaging condition of Fourier-transform ghost imaging in the far field[J]. Laser Physics Letters, 2020, 17: 055201. doi: 10.1088/1612-202X/ab7a9a [45] Guo Yuankai, Wen Xiaoxiao, Lin Wei, et al. Real-time multispeckle spectral-temporal measurement unveils the complexity of spatiotemporal solitons[J]. Nature Communications, 2021, 12: 67. doi: 10.1038/s41467-020-20438-z [46] Liu Kewei, Xiao Xiaosheng, Ding Yihang, et al. Buildup dynamics of multiple solitons in spatiotemporal mode-locked fiber lasers[J]. Photonics Research, 2021, 9(10): 1898-1906. doi: 10.1364/PRJ.428687 [47] Kong Lingjie, Xiao Xiaosheng, Yang Changxi. Operating regime analysis of a mode-locking fiber laser using a difference equation model[J]. Journal of Optics, 2011, 13: 105201. doi: 10.1088/2040-8978/13/10/105201 [48] Li Feng, Wai P K A, Kutz J N. Geometrical description of the onset of multi-pulsing in mode-locked laser cavities[J]. Journal of the Optical Society of America B, 2010, 27(10): 2068-2077. doi: 10.1364/JOSAB.27.002068 [49] Liu Kewei, Xiao Xiaosheng, Yang Changxi. Observation of transition between multimode Q-switching and spatiotemporal mode locking[J]. Photonics Research, 2021, 9(4): 530-534. doi: 10.1364/PRJ.416523 [50] Teğin U, Kakkava E, Rahmani B, et al. Spatiotemporal self-similar fiber laser[J]. Optica, 2019, 6(11): 1412-1415. doi: 10.1364/OPTICA.6.001412 [51] Teğin U, Rahmani B, Kakkava E, et al. Single-mode output by controlling the spatiotemporal nonlinearities in mode-locked femtosecond multimode fiber lasers[J]. Advanced Photonics, 2020, 2: 056005. [52] Wei Xiaoming, Jing J C, Shen Yuecheng, et al. Harnessing a multi-dimensional fibre laser using genetic wavefront shaping[J]. Light: Science & Applications, 2020, 9: 149. [53] Ruan Qiujun, Xiao Xiaosheng, Zou Jinhai, et al. Visible-wavelength spatiotemporal mode-locked fiber laser delivering 9 ps, 4 nJ pulses at 635 nm[J]. Laser & Photonics Reviews, 2022, 16: 2100678. [54] Zou Jinhai, Dong Chuchu, Wang Hongjian, et al. Towards visible-wavelength passively mode-locked lasers in all-fibre format[J]. Light: Science & Applications, 2020, 9: 61. [55] Teğin U, Rahmani B, Kakkava E, et al. All-fiber spatiotemporally mode-locked laser with multimode fiber-based filtering[J]. Optics Express, 2020, 28(16): 23433-23438. doi: 10.1364/OE.399668 [56] Teğin U, Ortaç B. All-fiber all-normal-dispersion femtosecond laser with a nonlinear multimodal interference-based saturable absorber[J]. Optics Letters, 2018, 43(7): 1611-1614. doi: 10.1364/OL.43.001611 [57] Wu Han, Lin Wei, Tan Yanjie, et al. Pulses with switchable wavelengths and hysteresis in an all-fiber spatio-temporal mode-locked laser[J]. Applied Physics Express, 2020, 13: 022008. doi: 10.35848/1882-0786/ab6938 [58] Long Jingan, Gao Yuxin, Lin Wei, et al. Switchable and spacing tunable dual-wavelength spatiotemporal mode-locked fiber laser[J]. Optics Letters, 2021, 46(3): 588-591. doi: 10.1364/OL.412086 [59] Ma Zelong, Long Jingan, Lin Wei, et al. Tunable spatiotemporal mode-locked fiber laser at 1.55 μm[J]. Optics Express, 2021, 29(6): 9465-9473. doi: 10.1364/OE.415318 [60] Lin Xubin, Gao Yuxin, Long Jingan, et al. All few-mode fiber spatiotemporal mode-locked figure-eight laser[J]. Journal of Lightwave Technology, 2021, 39(17): 5611-5616. doi: 10.1109/JLT.2021.3087784 [61] Wu Jiawen, Liu Guangxin, Gao Yuxin, et al. Switchable femtosecond and picosecond spatiotemporal mode-locked fiber laser based on NALM and multimode interference filtering effects[J]. Optics & Laser Technology, 2022, 155: 108414. [62] Xie Shangzhi, Jin Liang, Zhang He, et al. All-fiber high-power spatiotemporal mode-locked laser based on multimode interference filtering[J]. Optics Express, 2022, 30(2): 2909-2917. doi: 10.1364/OE.443505 [63] Zhang Huaiwei, Zhang Yunhong, Peng Jiying, et al. All-fiber spatiotemporal mode-locking lasers with large modal dispersion[J]. Photonics Research, 2022, 10(2): 483-490. doi: 10.1364/PRJ.444750 [64] Zhang Xuebin, Wang Zhaokun, Shen Changyu, et al. Spatiotemporal self-mode-locked operation in a compact partial multimode Er-doped fiber laser[J]. Optics Letters, 2022, 47(8): 2081-2084. doi: 10.1364/OL.451832 [65] Qiu Mingwei, Chen Mengmeng, Zhang Zuxing. Wavelength-dependent Kerr beam self-cleaning in spatiotemporal mode-locked multimode fiber laser[J]. IEEE Photonics Technology Letters, 2021, 33(19): 1073-1076. doi: 10.1109/LPT.2021.3103154 [66] Dai Chuansheng, Dong Zhipeng, Lin Jiaqiang, et al. Self-cleaning effect in an all-fiber spatiotemporal mode-locked laser based on graded-index multimode fiber[J]. Optik, 2021, 243: 167487. doi: 10.1016/j.ijleo.2021.167487 [67] Lyu Meng, Lin Zhiquan, Li Guowei, et al. Fast modal decomposition for optical fibers using digital holography[J]. Scientific Reports, 2017, 7: 6556. doi: 10.1038/s41598-017-06974-7 [68] Fontaine N K, Ryf R, Chen H S, et al. Laguerre-Gaussian mode sorter[J]. Nature Communications, 2019, 10: 1865. doi: 10.1038/s41467-019-09840-4 [69] Shapira O, Abouraddy A F, Joannopoulos J D, et al. Complete modal decomposition for optical waveguides[J]. Physical Review Letters, 2005, 94: 143902. doi: 10.1103/PhysRevLett.94.143902 [70] Brüning R, Gelszinnis P, Schulze C, et al. Comparative analysis of numerical methods for the mode analysis of laser beams[J]. Applied Optics, 2013, 52(32): 7769-7777. doi: 10.1364/AO.52.007769 [71] Lü Haibin, Zhou Pu, Wang Xiaolin, et al. Fast and accurate modal decomposition of multimode fiber based on stochastic parallel gradient descent algorithm[J]. Applied Optics, 2013, 52(12): 2905-2908. doi: 10.1364/AO.52.002905 [72] Xie Kun, Liu Wenguang, Zhou Qiong, et al. Adaptive phase correction of dynamic multimode beam based on modal decomposition[J]. Optics Express, 2019, 27(10): 13793-13802. doi: 10.1364/OE.27.013793 -