A simulation study of two-dimensional anti-scatter grid in container CT inspection system
-
摘要: 基于辐射成像系统蒙卡模拟软件NucRPD,对一款以9 MeV加速器作为辐射源的集装箱CT检查系统进行全系统蒙卡模拟,并使用目标晶体笔标记法、散射部件标记法与断层图像计算法综合分析了位于探测器晶体前方的二维防散射滤线栅对散射X射线的压低作用。计算结果表明此款集装箱CT检查系统中二维防散射滤线栅对于降低散射X射线的作用有限,后续在工程应用中无需使用二维防散射滤线栅,这将极大降低后端集装箱CT检查系统探测器与旋转机架等部件的机械设计难度与工程实现成本。Abstract: Based on Nuctech radiography Monte Carlo simulation software NucRPD, three methods are developed to analyze the effect of the two-dimensional anti-scatter grid in the container CT inspection system with a 9MeV accelerator: target crystal pen tag method, scattered component tag method, and tomography image reconstruction method. Calculation results of the three methods all show that the profit of the two-dimensional anti-scatter grid in reducing scattered X-rays in this container CT inspection system is limited. It is suggested that the two-dimensional anti-scatter grid not to be used in the subsequent engineering implementation, which will greatly reduce not only the mechanical design difficulty of the detector and rotating gantry, but also the engineering cost.
-
表 1 散射部件能量沉积比例计算结果
Table 1. Scattered component energy deposition ratio result
component energy deposition ratio without 2D ASG/% energy deposition ratio with 2D ASG/% difference of with - without 2D ASG/% CWO BGO CWO BGO CWO BGO signal
X-raycrystals 52.95±0.06 54.60±0.04 53.72±0.06 55.29±0.04 0.77±0.08 0.69±0.06 scattered
X-rayreflector 3.28±0.01 1.68±0.01 3.23±0.01 1.66±0.01 −0.05±0.01 −0.02±0.01 tungsten spacer 15.29±0.03 13.65±0.02 13.19±0.02 12.13±0.01 −2.10±0.04 −1.52±0.02 cushion 0.01±0.01 0.01±0.01 0.01±0.01 0.01±0.01 0.00±0.01 0.00±0.01 other rows 13.62±0.02 16.41±0.02 14.53±0.02 17.21±0.02 0.91±0.03 0.80±0.03 PCB board 0.26±0.01 0.31±0.01 0.27±0.01 0.31±0.01 0.01±0.01 0.00±0.01 base 0.11±0.01 0.26±0.01 0.11±0.01 0.26±0.01 0.00±0.01 0.00±0.01 appearance
box1.19±0.01 1.36±0.01 1.04±0.01 1.31±0.01 −0.15±0.01 −0.05±0.01 others 13.29±0.02 11.72±0.01 13.90±0.02 11.82±0.01 0.61±0.03 −0.10±0.01 -
[1] Rubin G D. Computed tomography: revolutionizing the practice of medicine for 40 years[J]. Radiology, 2014, 273(s2): S45-S74. [2] 李新斌, 张丽, 陈志强, 等. 行包货物实时验放CT智能解决方案[J]. CT理论与应用研究, 2022, 31(5):597-615Li Xinbin, Zhang Li, Chen Zhiqiang, et al. CT intelligent solution for real-time inspection and release of baggage and cargo[J]. CT Theory and Applications, 2022, 31(5): 597-615 [3] 唐利华, 张国光, 张健, 等. 静态CT行包安检系统关键技术研究[J]. 原子能科学技术, 2021, 55(5):933-938 doi: 10.7538/yzk.2020.youxian.0373Tang Lihua, Zhang Guoguang, Zhang Jian, et al. Research on key technology of static CT luggage security inspection system[J]. Atomic Energy Science and Technology, 2021, 55(5): 933-938 doi: 10.7538/yzk.2020.youxian.0373 [4] 先武, 李时光, 王珏. 最佳无损检测手段──工业CT技术的发展[J]. 光电工程, 1995, 22(4):51-58Xian Wu, Li Shiguang, Wang Jue. Development of the optimal nondestructive testing approach──industrial CT[J]. Opto-Electronic Engineering, 1995, 22(4): 51-58 [5] Alexeev T, Kavanagh B, Miften M, et al. Two-dimensional antiscatter grid: a novel scatter rejection device for cone-beam computed tomography[J]. Medical Physics, 2018, 45(2): 529-534. doi: 10.1002/mp.12724 [6] Wu Zhifang, Liu Jinhui. Experimental research on rear collimator in γ-ray industrial CT[J]. Applied Radiation and Isotopes, 2009, 67(7/8): 1216-1219. [7] Pratiwi E, Bae S, Lee H, et al. Collimators for gamma dual energy CT arch-detector: a simulation study[J]. Journal of the Korean Physical Society, 2020, 76(1): 79-85. doi: 10.3938/jkps.76.79 [8] Vogtmeier G, Dorscheid R, Engel K J, et al. Two-dimensional anti-scatter grids for computed tomography detectors[C]//Proceedings of SPIE 6913, Medical Imaging 2008: Physics of Medical Imaging. 2008: 691359. [9] 吴小刚, 武祯, 明申金, 等. 辐射成像系统模拟软件NUCRPD的研发与应用[J]. 强激光与粒子束, 2017, 29:126003 doi: 10.11884/HPLPB201729.170229Wu Xiaogang, Wu Zhen, Ming Shenjin, et al. Development and application of the radiography simulation software NUCRPD[J]. High Power Laser and Particle Beams, 2017, 29: 126003 doi: 10.11884/HPLPB201729.170229 [10] 李君利, 娄云, 李鹏宇, 等. Monte Carlo散射标记方法在辐射防护设计中的应用[J]. 清华大学学报(自然科学版), 2007, 47(s1):947-950 doi: 10.3321/j.issn:1000-0054.2007.z1.012Li Junli, Lou Yun, Li Pengyu, et al. Monte Carlo sign-scatter method for radioprotection design[J]. Journal of Tsinghua University (Science and Technology), 2007, 47(s1): 947-950 doi: 10.3321/j.issn:1000-0054.2007.z1.012 [11] Allison J, Amako K, Apostolakis J, et al. Geant4 developments and applications[J]. IEEE Transactions on Nuclear Science, 2006, 53(1): 270-278. doi: 10.1109/TNS.2006.869826 [12] Asai M, Dotti A, Verderi M, et al. Recent developments in Geant4[J]. Annals of Nuclear Energy, 2015, 82: 19-28. doi: 10.1016/j.anucene.2014.08.021 [13] Schofield R, King L, Tayal U, et al. Image reconstruction: part 1—understanding filtered back projection, noise and image acquisition[J]. Journal of Cardiovascular Computed Tomography, 2020, 14(3): 219-225. doi: 10.1016/j.jcct.2019.04.008 [14] Tang Xiangyang, Hsieh J, Nilsen R A, et al. A three-dimensional-weighted cone beam filtered backprojection (CB-FBP) algorithm for image reconstruction in volumetric CT—helical scanning[J]. Physics in Medicine and Biology, 2006, 51(4): 855-874. doi: 10.1088/0031-9155/51/4/007 -