Composite device of intelligent multifunctional laser protective goggles and automatic detection and alarm
-
摘要: 设计研制智能型多功能激光防护镜与自动探测告警一体化复合装置,主要用于各类激光辐射人眼损伤的防护和预警。对防护镜和探测告警系统及智能化复合防护技术进行研究和性能测试,利用防护镜与告警装置的信号互联和联动作用,使防护镜双镜复合,并发出告警信号。结果表明,当激光防护告警复合装置探测到激光入侵时均能以不同方式发出各种告警信号和复合防护响应,包括不同颜色灯光闪烁、音响和振动告警,驱使两个防护镜单元镜组复合,对532 nm、1 064 nm、470 nm、808 nm和700~2 000 nm特定波长激光和超连续谱激光进行有效防护,可通过无线信号互联实现集群联动告警和防护。该激光防护镜与探测告警复合装置具有智能化、模块化、多功能集成的特点,各项性能符合设计要求。Abstract: A composite device of intelligent multifunctional laser protection goggles and automatic detection and alarm is designed and developed, which is mainly used for protection and early warning of human eye damage caused by laser radiation. The protection spectacles, detection and alarm system and intelligent composite protective technology are studied. The laser protection and detection and alarm performance of the composite device are tested. The signal interconnection and linkage between the protection spectacles and alarm device are used to combine the protection spectacles’ double spectacles and send alarm signals. The results show that when the laser protection alarm compound device detects the laser irriadiation, it can send out various alarm signals and compound protection response in different ways, including flashing lights of different colors, sound and vibration alarms, and drive the two protection spectacles to recombine. It can effectively protect human eyes from laser of specific wavelengths (532 nm, 1 064 nm, 470 nm, 808 nm and 700−2 000 nm) as well as from supercontinuum laser, and realize cluster linkage alarm and protection through wireless signal interconnection. The laser protection spectacles and detection and alarm composite device has the characteristics of intelligent, modular and multifunctional integration, and its performance meets the design requirements
-
表 1 多波长激光防护镜防护性能测试结果
Table 1. Protection performance test results of multi-wavelength laser protective spectacles
sample number emission mode average optical density value relative standard deviation/% 532 nm 1064 nm 470 nm 808 nm 532 nm 1064 nm 470 nm 808 nm A-SL4-001 M 4.31 4.11 0.48 1.69 A-SL4-002 M 4.98 4.00 2.51 1.61 A-SL4-003 M 4.01 3.97 1.55 1.81 B-BL10-001 M 4.72 0.28 B-BL10-002 M 4.51 2.59 B-BL10-003 M 4.46 1.39 B-BL15-001 M 5.24 0.11 B-BL15-002 M 4.60 0.22 B-BL15-003 M 4.61 0.20 C-FXX1-001 M 1.87 0.55 D-NM1-001 M 4.05 4.00 0.38 1.61 D-NM7-001 M 2.56 4.15 0.74 1.25 E-JZF1-001 M 4.98 4.72 0.58 0.63 E-JZF1-002 M 4.83 4.18 0.64 0.79 F-JT1-001 M 5.93 4.51 0.52 0.76 G-GD-01-001* M 5.83 4.76 0.07 0.06 G-GD-02-002** M 4.72 4.74 0.28 0.07 H-QX1-001 M 2.24 0.89 A-SL1-001 L 4.07 4.06 0.04 0.46 A-SL1-002 L 4.05 4.16 0.51 0.34 A-SL1-003 L 3.96 4.08 0.52 0.62 A-SL4-001 L 4.65 4.34 1.99 1.36 0.03 0.52 A-SL4-002 L 4.66 5.05 2.11 1.37 1.16 0.34 A-SL4-003 L 4.31 4.25 2.15 0.58 0.35 0.67 B-BL10-001 L 1.67 0.27 B-BL15-001 L 5.96 2.70 B-BL1-001 L 3.53 0.24 B-BL3-001 L 4.65 0.20 D-NM3-001 L 3.28 3.44 0.48 0.78 D-NM4-001 L 3.25 3.38 0.68 0.77 D-NM7-001 L 2.73 3.12 0.22 0.31 Note: M− pulse laser; L − continuous laser; * static; ** dynamic
A − optical plastic absorption type (SL);
B − colored optical glass absorption type (BL);
C − nonlinear optical material absorption type (FXX);
D − nano-composite optical material absorption type (NM);
E − glass absorption + dielectric film reflection compound type (JZF);
F − polycarbonate absorption type (JT);
G − photoelectric switch polarization attenuation type (GD);
H − holographic grating diffraction attenuation type (QX).表 2 复合式多波长激光防护镜防护性能测试结果
Table 2. Protection performance test results of composite multi-wavelength laser protective spectacles
sample number emission mode average optical density value relative standard deviation/% 532 nm 1064 nm 470 nm 808 nm 532 nm 1064 nm 470 nm 808 nm SL4-BL10-BL15 * M 5.33 6.72 0.14 0.12 SL4-BL10-BL15 ** M 5.32 6.71 0.26 0.31 SL4-BL10-BL15 # M 5.18 6.33 0.37 0.15 SL4-BL10-BL15 # # M 5.18 6.33 0.14 0.06 SL4-BL10-BL15 L 4.43 4.18 5.55 0.95 0.39 1.42 SL4-BL10--001 L 4.58 4.76 5.33 1.56 0.35 0.62 SL4-BL15--001 L 4.45 4.85 5.49 1.04 0.89 2.71 Note: M − pulse laser; L − continuous laser
* protection spectacles 1 left; ** protection spectacles 1 right; # protection spectacles 2 left; # # protection spectacles 2 right表 3 复合式超连续谱激光防护镜防护性能测试结果
Table 3. Protection performance test results of composite supercontinuum laser protective spectacles
sample
numberOD S OD S OD S OD S OD S OD S OD S mean
optical
densitymean relative
standard
deviation/%532 nm 1 064 nm 470 nm 808 nm 1 400 nm 1 700 nm 1 800 nm SL4-BL10-BL15 * 2.10 0.46 2.08 0.92 2.26 0.21 2.29 0.48 4.12 0.62 3.72 0.11 3.79 1.04 2.91 0.55 SL4-BL10-BL15 ** 2.08 0.72 2.05 0.70 2.26 0.37 2.31 0.48 3.99 1.12 3.80 0.58 3.84 0.44 2.90 0.63 SL4-BL10-BL15 # 2.13 0.85 2.06 0.55 2.32 0.35 2.35 0.43 4.14 0.33 3.88 1.15 3.81 0.68 2.96 0.62 SL4-BL10-BL15 # # 2.11 0.47 2.07 0.49 2.30 0.46 2.37 0.55 4.12 1.07 3.84 0.78 3.82 0.89 2.95 0.67 Note: OD − optical density; S − relative standard deviation (%); * protection spectacles 1 left; ** protection spectacles 1 right; # protection spectacles 2 left; # # protection spectacles 2 right 表 4 超连续谱激光防护镜分镜防护性能测试结果
Table 4. Test results of protection performance of supercontinuum laser protective spectacles
sample number OD S OD S OD S OD S mean optical
densitymean relative
standard
deviation/%532 nm 1 064 nm 470 nm 808 nm SL-4 1.06 0.19 1.69 0.48 1.09 0.20 1.19 0.20 1.26 0.27 BL10 0.69 1.39 1.39 0.32 0.69 0.27 0.69 0.23 0.87 0.55 BL15 1.20 0.35 2.04 0.40 1.20 0.35 1.33 0.17 1.44 0.32 Note: OD − optical density; S − relative standard deviation (%) 表 5 激光防护探测告警性能测试结果
Table 5. Test results of laser protection detection and alarm performance
sample
numberincidence
angleE H S E H S laser alarm response 532 nm 1 064 nm light sound vibration dual-spectacles
recombinationcluster
linkageLZK-01 +30 49.53 2.53 1.78 18.32 0.93 0.58 Y Y Y Y Y +15 49.48 2.52 2.94 18.03 0.92 1.20 Y Y Y Y Y 0° 41.94 2.14 0.79 20.01 1.02 0.52 Y Y Y Y Y −15 48.09 2.45 2.14 18.59 0.95 2.21 Y Y Y Y Y −30 48.33 2.47 1.45 18.48 0.94 2.12 Y Y Y Y Y LZK-02 +30 68.34 3.49 0.69 43.31 2.21 1.54 Y Y Y Y Y +15 68.29 3.48 1.08 43.69 2.23 2.25 Y Y Y Y Y 0° 66.08 3.37 2.89 44.33 2.26 0.85 Y Y Y Y Y −15 68.43 3.49 0.93 43.55 2.22 1.84 Y Y Y Y Y −30 68.76 3.51 0.67 44.16 2.25 0.93 Y Y Y Y Y Note: E − average laser irradiation energy (nJ); H − average laser radiant exposure (10−7 J/cm2); S − relative standard deviation (%); Y − responsive; N − no response -
[1] 赵志刚, 刘虎, 尚乾, 等. 激光驾束制导弹药发展现状及在俄乌冲突中的应用[J]. 激光与红外, 2022, 52(12):1747-1751Zhao Zhigang, Liu Hu, Shang Qian, et al. Development status of laser beam riding guidance munitions and its application in Russia Ukraine conflict[J]. Laser & Infrared, 2022, 52(12): 1747-1751 [2] 宋振之, 韩道文, 吴中伟, 等. 激光半主动制导导弹作战效能影响分析[J]. 激光与红外, 2022, 52(2):253-258Song Zhenzhi, Han Daowen, Wu Zhongwei, et al. Analysis of operational effectiveness of laser semi-active guided missile[J]. Laser & Infrared, 2022, 52(2): 253-258 [3] 曹晓荷, 朱斌, 尚建蓉, 等. 激光制导伪随机编码信号解码技术[J]. 激光技术, 2021, 45(2):155-161Cao Xiaohe, Zhu Bin, Shang Jianrong, et al. Decoding technique of laser-guided pseudo-random coded signals[J]. Laser Technology, 2021, 45(2): 155-161 [4] 张小龙, 徐广平, 曹昌东. 舰面光电制导设备远程激光测距技术问题研究[J]. 激光与红外, 2022, 52(8):1177-1181Zhang Xiaolong, Xu Guangping, Cao Changdong. Research on long-range laser ranging technology of ship surface photoelectric guidance equipment[J]. Laser & Infrared, 2022, 52(8): 1177-1181 [5] 张德斌, 江清波, 王晔, 等. 国外地面激光测距目标指示器的发展现状[J]. 激光技术, 2021, 45(1):126-130Zhang Debin, Jiang Qingbo, Wang Ye, et al. The abroad development of laser target designation[J]. Laser Technology, 2021, 45(1): 126-130 [6] 朱峻可, 李丽娟, 林雪竹. 激光雷达测量系统的测量场规划研究[J]. 激光技术, 2021, 45(1):99-104Zhu Junke, Li Lijuan, Lin Xuezhu. Research on the measurement field planning of Lidar measurement system[J]. Laser Technology, 2021, 45(1): 99-104 [7] 梁晓峰, 杨泽后, 王顺艳, 等. 基于差分吸收激光雷达有毒有害气体遥测进展[J]. 激光技术, 2021, 45(1):53-60Liang Xiaofeng, Yang Zehou, Wang Shunyan, et al. Development of toxic and harmful gas remote sense based on differential absorption Lidar technology[J]. Laser Technology, 2021, 45(1): 53-60 [8] 罗振坤, 王秋华. 化学/生物战剂激光雷达探测技术[J]. 医疗卫生装备, 2011, 32(1):81-84Luo Zhenkun, Wang Qiuhua. Lidar detection technology for chemical/biological agents[J]. Chinese Medical Equipment Journal, 2011, 32(1): 81-84 [9] Shi L K, Pei Y, Yun Q J, et al. Agent-based effectiveness evaluation method and impact analysis of airborne laser weapon system in cooperation combat[J]. Chinese Journal of Aeronautics, 2023, 36(4): 442-454. doi: 10.1016/j.cja.2022.11.006 [10] Jabczyński J K, Gontar P. Impact of atmospheric turbulence on coherent beam combining for laser weapon systems[J]. Defence Technology, 2021, 17(4): 1160-1167. doi: 10.1016/j.dt.2020.06.021 [11] 易亨瑜, 齐予, 易欣仪, 等. 美国舰载激光系统的成熟度评估[J]. 应用光学, 2021, 42(1):9-15 doi: 10.5768/JAO202142.0101002Yi Hengyu, Qi Yu, Yi Xinyi, et al. Technology readiness level assessment on ship-borne laser weapon system[J]. Journal of Applied Optics, 2021, 42(1): 9-15 doi: 10.5768/JAO202142.0101002 [12] 任国光. 高能激光武器的现状与发展趋势[J]. 激光与光电子学进展, 2008, 45(9):62-69Ren Guoguang. Current situation and development trend of high energy laser weapon[J]. Laser & Optoelectronics Progress, 2008, 45(9): 62-69 [13] 刘小强, 杨修林, 陆培国, 等. 激光武器控制系统研究[J]. 激光与红外, 2022, 52(8):1238-1245Liu Xiaoqiang, Yang Xiulin, Lu Peiguo, et al. Analysis of control system for high energy laser system[J]. Laser & Infrared, 2022, 52(8): 1238-1245 [14] 罗磊, 谭碧涛. 舰载激光武器作战运用研究[J]. 激光与红外, 2022, 52(7):1058-1063Luo Lei, Tan Bitao. Research on operational application of shipborne laser weapon[J]. Laser & Infrared, 2022, 52(7): 1058-1063 [15] 易亨瑜, 锁兴文, 易欣仪, 等. 美国运输机机载激光系统研制进展[J]. 激光技术, 2021, 45(2):174-181 doi: 10.7510/jgjs.issn.1001-3806.2021.02.008Yi Hengyu, Suo Xingwen, Yi Xinyi, et al. Development of AC-130J AHEL system[J]. Laser Technology, 2021, 45(2): 174-181 doi: 10.7510/jgjs.issn.1001-3806.2021.02.008 [16] 李朝龙, 崔旭涛, 赵寒, 等. 战术激光武器陆战场运用思考[J]. 激光与红外, 2020, 50(11):1298-1302Li Chaolong, Cui Xutao, Zhao Han, et al. Research on the use of tactical laser weapons in the field[J]. Laser & Infrared, 2020, 50(11): 1298-1302 [17] 吴玲, 卢俊霖, 许俊飞. 激光武器反无人机集群建模与效能评估[J]. 激光与红外, 2022, 52(6):887-892Wu Ling, Lu Junlin, Xu Junfei. Modeling and effectiveness evaluation on UAV cluster interception using laser weapon systems[J]. Laser & Infrared, 2022, 52(6): 887-892 [18] 杨剑波, 宗思光, 陈利斐. 舰载激光武器对典型无人机蜂群目标毁伤距离研究[J]. 激光与红外, 2022, 52(5):745-751Yang Jianbo, Zong Siguang, Chen Lifei. Research on destruction distance of shipborne laser weapon to typical UAV swarm target[J]. Laser & Infrared, 2022, 52(5): 745-751 [19] 王喆, 许凌飞, 顾村锋. 针对复合材料无人机的激光武器系统杀伤效能仿真计算[J]. 空天防御, 2018, 1(1):63-68Wang Zhe, Xu Lingfei, Gu Cunfeng. Simulation of damage effect of laser weapon system against composite unmanned aerial vehicle[J]. Air & Space Defense, 2018, 1(1): 63-68 [20] 徐国亮, 赵书斌, 王勇. 舰载激光武器拦截无人机技术指标分析[J]. 现代防御技术, 2015, 43(5):12-17 doi: 10.3969/j.issn.1009-086x.2015.05.003Xu Guoliang, Zhao Shubin, Wang Yong. Technology analysis of shipborne high energy laser weapon systems intercepting UAVs[J]. Modern Defense Technology, 2015, 43(5): 12-17 doi: 10.3969/j.issn.1009-086x.2015.05.003 [21] 马琼, 范应威, 梁洁, 等. 超连续谱激光可见谱段致人眼眩目效应研究[J]. 激光生物学报, 2020, 29(1):75-79Ma Qiong, Fan Yingwei, Liang Jie, et al. Research on dazzling effects of human eyes induced by the visible band irradiation of supercontinuum laser[J]. Acta Laser Biology Sinica, 2020, 29(1): 75-79 [22] Coffey K, Abel L, Karas R, et al. Effect of laser eye protection devices on color perception[J]. Journal of the Optical Society of America A, 2023, 40(3): A9-A15. doi: 10.1364/JOSAA.477131 [23] Zhang Q, Ma Z, Gao L H, et al. Laser stealth and laser protection properties of oxide-carbide coatings prepared by atmospheric plasma spraying[J]. Ceramics International, 2022, 48(21): 31389-31396. doi: 10.1016/j.ceramint.2022.07.022 [24] Xu Z, Zhang L, Bai G H, et al. Hybrid effect of nanoparticles-containing atomization system for highly efficient angle-independent laser protection[J]. Materials Letters, 2022, 325: 132845. doi: 10.1016/j.matlet.2022.132845 [25] Legall H, Schwanke C, Bonse J, et al. X-ray radiation protection aspects during ultrashort laser processing[J]. Journal of Laser Applications, 2020, 32: 022004. doi: 10.2351/1.5134778 [26] 罗振坤, 王秋华, 高光煌, 等. 激光辐射多功能集成防护镜光学特性与复合技术[J]. 激光技术, 2011, 35(4):486-491 doi: 10.3969/j.issn.1001-3806.2011.04.012Luo Zhenkun, Wang Qiuhua, Gao Guanghuang, et al. Optical characteristics and compound technologies of multifunction protection goggles against laser radiation[J]. Laser Technology, 2011, 35(4): 486-491 doi: 10.3969/j.issn.1001-3806.2011.04.012 [27] Shi J, Zhang R, Niu J Q, et al. Research on two-dimensional laser warning integrated detection technology[J]. Optik, 2022, 270: 170034. doi: 10.1016/j.ijleo.2022.170034 [28] Tayel M, Shehata M, Mohamed A, et al. Robust design and analysis for opto-mechanical two array laser warning system[J]. Defence Technology, 2022. https://doi.org/10.1016/j.dt.2022.12.009. [29] Zhang R, Yang X M, Shi J, et al. Integrated optical system design for large-field-of-view and broad-spectrum laser warning[J]. Applied Optics, 2022, 61(14): 4187-4194. doi: 10.1364/AO.456928 [30] Wojtanowski J, Jakubaszek M, Zygmunt M. Freeform mirror design for novel laser warning receivers and laser angle of incidence sensors[J]. Sensors, 2020, 20: 2569. doi: 10.3390/s20092569 [31] El-Sherif A F, Ayoub H S, El-Sharkawy Y H, et al. The design and implementation of photoacoustic based laser warning receiver for harsh environments[J]. Optics & Laser Technology, 2018, 98: 385-396. [32] 刘彤宇, 闫秀生, 王恒立. 国外机载导弹逼近告警装备发展趋势分析[J]. 激光与红外, 2022, 52(8):1107-1111Liu Tongyu, Yan Xiusheng, Wang Hengli. Analysis on the trend of foreign airborne missile approach warning technology[J]. Laser & Infrared, 2022, 52(8): 1107-1111 [33] GJB 470A-97, 军用激光器危害的控制和防护[S]GJB 470A-97, Control and protection for military laser hazard[S] [34] 罗振坤, 王秋华, 刘海峰, 等. 基于VO2薄膜相变的强光限幅机制与复合防护技术[J]. 医疗卫生装备, 2010, 31(8):27-29 doi: 10.3969/j.issn.1003-8868.2010.08.011Luo Zhenkun, Wang Qiuhua, Liu Haifeng, et al. Optical limiting mechanism and protective technology for strong light based on phase transition of VO2 film[J]. Chinese Medical Equipment Journal, 2010, 31(8): 27-29 doi: 10.3969/j.issn.1003-8868.2010.08.011 [35] 罗振坤, 刘海峰, 孙嵘, 等. 激光防护镜自动检定装置与技术研究[J]. 医疗卫生装备, 2009, 30(7):17-20 doi: 10.3969/j.issn.1003-8868.2009.07.006Luo Zhenkun, Liu Haifeng, Sun Rong, et al. Research of the automatic verification device and testing technology for laser protective spectacles[J]. Chinese Medical Equipment Journal, 2009, 30(7): 17-20 doi: 10.3969/j.issn.1003-8868.2009.07.006 [36] 罗振坤, 孙嵘, 王秋华, 等. 激光防护镜自动检定装置测量不确定度的评定[J]. 医疗卫生装备, 2009, 30(12):8-11 doi: 10.3969/j.issn.1003-8868.2009.12.003Luo Zhenkun, Sun Rong, Wang Qiuhua, et al. Measurement uncertainty evaluation of automatic verification device for laser protective spectacles[J]. Chinese Medical Equipment Journal, 2009, 30(12): 8-11 doi: 10.3969/j.issn.1003-8868.2009.12.003 -