Application of nonlinear transmission line in DSRD pulse generator
-
摘要: 加速器技术的发展,对注入引出系统的kicker脉冲电源提出了新的技术要求。注入引出系统冲击磁铁不仅要求脉冲电压高,底宽达到ns量级,还对波形的稳定性和前后残余电压有很高要求。漂移阶跃恢复二极管(DSRD)因其速度快、工作电流大等优点,在ns级脉冲电源中应用前景广泛,但其工作过程中会存在预脉冲等使脉冲波形偏离理想形态的因素。基于一种已有的DSRD脉冲电源,使用非线性传输线对脉冲进行整形,同时对脉冲的前后边沿进行锐化,缩短脉冲边沿的时间,大幅减小脉冲前后的残余电压,提高电源的性能。完成了一台电源样机的设计和实验,实验结果表明,该样机在50 Ω负载上产生的脉冲幅值约10 kV,前后边沿时间(10%~90%)约2 ns,底宽(3%~3%)小于8 ns。Abstract: There is an increasingly higher requirement on the pulse source of kicker in the injection and extraction system with the development of accelerators. As a special nanosecond switch, Drift Step Recovery Diode (DSRD) has a great application prospect in pulse power technology for its notably short switching-off time and large working current. However, there are some factors such as pre-pulse that make the pulse waveform deviate from the ideal shape. A prototype of pulse generator was designed and tested. It is based on a basic DSRD circuit, at the same time, the Non-Linear Transmission Line (NTL) is used to shape the pulse, compress the edge and reduce the residual voltage. Its circuit experiment shows that the pulse amplitude on resistor load of 50 Ω is about 10 kV, the rise time and fall time are about 2 ns (10%−90%) and the bottom width (3%−3%) is less than 8 ns.
-
Key words:
- strip-line kicker /
- nano-second pulser /
- DSRD /
- non-linear transmission line
-
表 1 DSRD主要特征参数
Table 1. Main parameters of DSRD
parameter test conditions limit min max forward voltage Vf/V If=10 mA − 8 pulse voltage Vp/kV I≥300 A 10 − pulse current I/A Vp≥10 kV 300 − pulse edge tr/ns Vp=10 kV − 3 operating frequency fr/kHz Vp=10 kV,tr≤3 ns 10 − 表 2 非线性传输线的主要参数
Table 2. Main parameters of NTL
inner diameter of ferrite/mm outer diameter of ferrite/mm inner diameter of outer conductor/mm length of NTL1/mm length of NTL2/mm 1.65 3.0 8 160 110 表 3 电源输出脉冲的参数
Table 3. parameters of output pulse
peak voltage/kV rise time (10%-90%)/ns fall time (10%-90%)/ns bottom width (3%-3%)/ns without NTLs 12.9 4 8 >20 with NTLs 9.5 2 2 <8 -
[1] Xu Gang, Cui Xiaohao, Duan Zhe, et al. Progress of lattice design and physics studies on the high energy photon source[C]//Proceedings of the 9th International Particle Accelerator Conference. 2018: 1375-1378. [2] 焦毅, 白正贺. 第四代同步辐射光源物理设计与优化[J]. 强激光与粒子束, 2022, 34:104004 doi: 10.11884/HPLPB202234.220136Jiao Yi, Bai Zhenghe. Physics design and optimization of the fourth-generation synchrotron light sources[J]. High Power Laser and Particle Beams, 2022, 34: 104004 doi: 10.11884/HPLPB202234.220136 [3] 陈锦晖, 王磊, 施华, 等. HEPS在轴注入冲击器系统及快脉冲电源样机研制[J]. 强激光与粒子束, 2019, 31:040017 doi: 10.11884/HPLPB201931.190007Chen Jinhui, Wang Lei, Shi Hua, et al. Application of fast pulsed power supply to high energy photon source[J]. High Power Laser and Particle Beams, 2019, 31: 040017 doi: 10.11884/HPLPB201931.190007 [4] Shang L, Liu W, Lu Y, et al. Status of the R&D for HALS injection system[C]//Proceedings of the 10th International Particle Accelerator Conference. 2019. [5] Steier C, Anders A, Luo T, et al. On-axis swap-out R&D for ALS-U[C]//Proceedings of IPAC 2017. 2017: 2821-2823. [6] Cook E G. Review of solid-state modulators[C]//Proceedings of the XXth International Linac Conference. 2000. [7] 吴佳霖, 刘英坤. 高功率半导体开关器件DSRD的研究进展[J]. 微纳电子技术, 2015, 52(4):211-215,250Wu Jialin, Liu Yingkun. Research development of the high power semiconductor switching device DSRD[J]. Micronanoelectronic Technology, 2015, 52(4): 211-215,250 [8] Benwell A, Burkhart C, Krasnykh A, et al. A 5KV, 3MHz solid-state modulator based on the DSRD switch for an ultra-fast beam kicker[C]//2012 IEEE International Power Modulator and High Voltage Conference. 2013: 328-331. [9] Krasnykh A. Overview of driver technologies for nanosecond TEM kickers[C]//Proceedings of the 7th International Particle Accelerator Conference. 2016: 3645-3647. [10] 镡延桢, 王明宝. 铁氧体同轴线的特性及其应用[J]. 传输线技术, 1980(5):10-13,20Tan Yanzhen, Wang Mingbao. Characteristics and application of ferrite coaxial line[J]. Optical Fiber & Electric Cable and Their Applications, 1980(5): 10-13,20 [11] 铁氧体形成线课题组. 铁氧体形成线概况[J]. 传输线技术, 1978(2):1-16Ferrite Forming Line Research Group. Overview of ferrite formation line[J]. Transmission Line Technology, 1978(2): 1-16 [12] Grekhov I V, Mesyats G A. Physical basis for high-power semiconductor nanosecond opening switches[J]. IEEE Transactions on Plasma Science, 2000, 28(5): 1540-1544. doi: 10.1109/27.901229 [13] Brylevsky V I, Efanov V M, Kardo-Sysyev A F, et al. Power nanosecond semiconductor opening plasma switches[C]//Proceedings of 1996 International Power Modulator Symposium. 1996: 51-54. [14] Lyublinsky A G, Korotkov S V, Aristov Y V, et al. Pulse power nanosecond-range DSRD-based generators for electric discharge technologies[J]. IEEE Transactions on Plasma Science, 2013, 41(10): 2625-2629. doi: 10.1109/TPS.2013.2264328 [15] 乔中兴. 铁氧体填充非线性同轴传输线相关特性的研究[D]. 杭州: 浙江工业大学, 2016: 17-21Qiao Zhongxing. Investigation of ferrite-filled coaxial nonlinear transmission lines related features[D]. Hangzhou: Zhejiang University of Technology, 2016: 17-21 -