Prediction model of second-order intermodulation pseudo-signal interference effect for radar equipment
-
摘要: 为掌握雷达装备的抗电磁干扰性能,需要对其进行全面的电磁环境效应测试与评估,为雷达应用及电磁防护加固提供技术支撑。从二阶互调电磁辐射伪信号干扰效应机理出发,引入效应指数的概念将复杂电磁环境适应性的多变量问题用单一变量表征,实现了雷达装备复杂电磁环境伪信号干扰效应的定量表征,建立了二阶互调伪信号干扰效应评估模型。以某型扫频连续波测距雷达为研究对象,针对受试雷达在试验中出现的二阶互调伪信号干扰现象,给出了模型参数的确定方法,提出雷达装备二阶互调伪信号干扰效应预测评估方法。实验验证结果表明:无论是改变伪信号敏感电平,还是在大辐射频偏、大互调频差范围内改变双频电磁辐射组合,采用普适性二阶互调伪信号干扰效应模型对受试雷达进行二阶互调伪信号干扰效应评估,评估误差均在2.5 dB以内,依据效应预测方法能够客观评估雷达装备二阶互调伪信号干扰。Abstract: To master the anti-electromagnetic interference performance of radar equipment, it is necessary to carry out comprehensive electromagnetic environment effect test and evaluation to provide technical support for radar application and electromagnetic protection reinforcement. Based on the mechanism of pseudo-signal interference effect of second-order intermodulation electromagnetic radiation, the concept of effect index is introduced to characterize the multivariable problem of complex electromagnetic environment adaptability with a single variable. The quantitative characterization of pseudo-signal interference effect of radar equipment in complex electromagnetic environment is realized, and the evaluation model of pseudo-signal interference effect of second-order intermodulation is established. Taking a certain type of sweep frequency continuous wave ranging radar as the research object, aiming at the second-order intermodulation pseudo-signal interference phenomenon in the test radar, the method of determining the model parameters is given, and the prediction and evaluation method of the second-order intermodulation pseudo-signal interference effect of radar equipment is proposed. Experimental verification shows that whether it is to change the pseudo-signal sensitivity level, or to change the dual-frequency electromagnetic radiation combination in the range of large radiation frequency offset and large intermodulation difference, the universal second-order intermodulation pseudo-signal interference effect model can be used to evaluate the second-order intermodulation pseudo-signal interference effect of the tested radar. The evaluation error is within 2.5 dB, and the second-order intermodulation pseudo-signal interference of radar equipment can be objectively evaluated according to the effect prediction method.
-
表 1 单频电磁辐射临界阻塞干扰场强拟合值
Table 1. Fitting values of single frequency electromagnetic radiation critical blocking interference field strength
Δfi/MHz Ei0/(V·m−1) Δfi/MHz Ei0/(V·m−1) Δfi/MHz Ei0/(V·m−1) Δfi/MHz Ei0/(V·m−1) Δfi/MHz Ei0/(V·m−1) −320 90.2 −180 2.1 −40 0.5 100 0.6 240 79.4 −300 88.1 −160 0.9 −20 0.5 120 0.7 260 85.1 −280 76.7 −140 0.5 0 0.5 140 0.8 280 87.1 −260 50.7 −120 0.5 20 0.5 160 1.1 300 89.1 −240 24.3 −100 0.5 40 0.5 180 4.0 320 87.1 −220 11.4 −80 0.5 60 0.6 200 18.2 − − −200 4.9 −60 0.5 80 0.6 220 60.9 − − 表 2 二阶互调伪信号干扰因子
$ \;{ \beta _{\text{F}}}(\Delta {f_i}) $ 的测试结果Table 2. Test results of second-order intermodulation pseudo-signal interference factor
$ \;{ \beta _{\text{F}}}(\Delta {f_i}) $ Δfi/MHz $ \;{ \beta _{\text{F}}}(\Delta {f_i}) $/dB Δfi/MHz $ \;{ \beta _{\text{F}}}(\Delta {f_i}) $/dB Δfi/MHz $ \;{ \beta _{\text{F}}}(\Delta {f_i}) $/dB Δfi/MHz $ \;{ \beta _{\text{F}}}(\Delta {f_i}) $/dB −340 10.3 −160 11.4 20 12.8 200 10.8 −320 10.5 −140 11.9 40 13.0 220 10.4 −300 10.5 −120 12.4 60 13.2 240 10.2 −280 10.4 −100 12.7 80 13.3 260 10.2 −260 10.3 −80 12.8 100 13.3 280 10.2 −240 10.2 −60 12.8 120 13.0 300 10.3 −220 10.2 −40 12.7 140 12.5 320 10.2 −200 10.4 −20 12.6 160 11.9 340 10.1 −180 10.8 0 12.6 180 11.3 360 9.9 表 3 低频伪信号电平相对值Xr(∆f)的测试结果
Table 3. Test results of low frequency pseudo signal level relative value Xr(∆f)
|Δf|/MHz Xr(∆f)/dB |Δf|/MHz Xr(∆f)/dB |Δf|/MHz Xr(∆f)/dB |Δf|/MHz Xr(∆f)/dB |Δf|/MHz Xr(∆f)/dB 0.1 0.4 0.7 0.0 1.3 2.4 1.9 6.3 2.5 11.5 0.2 0.5 0.8 0.0 1.4 3.0 2 7.1 2.6 12.9 0.3 0.4 0.9 0.2 1.5 3.7 2.1 7.9 2.7 14.7 0.4 0.4 1 0.5 1.6 4.3 2.2 8.7 2.8 16.9 0.5 0.2 1.1 1.0 1.7 4.9 2.3 9.5 2.9 19.6 0.6 0.1 1.2 1.7 1.8 5.6 2.4 10.4 3 22.7 表 4 不同敏感电平下二阶互调伪信号干扰效应评估
Table 4. Interference effect evaluation of second-order intermodulation pseudo-signal under different sensitive levels
criterion/dBmV Δf1/MHz Δf2/MHz βF(Δf1)= βF(Δf2) Xr(0.6M) $ (\dfrac{{E}_{1}}{{E}_{10}}\text{.}\dfrac{{E}_{2}}{{E}_{20}})\text{/dB} $ RFS2/dB 6 −0.6 0 12.6 0.1 −30.5 0.6 −0.3 0.3 12.6 0.1 −32.1 −1.0 0 0.6 12.6 0.1 −30.2 0.9 18 −0.6 0 12.6 0.1 −18.6 0.5 −0.3 0.3 12.6 0.1 −19.1 0 0 0.6 12.6 0.1 −18.9 0.2 表 5 大辐射频偏范围二阶互调伪信号干扰效应评估
Table 5. Interference effect evaluation of second-order intermodulation pseudo-signal in large radiation frequency offset range
Δfi/MHz βF(Δf2) $ (\dfrac{{E}_{1}}{{E}_{10}}\text{.}\dfrac{{E}_{2}}{{E}_{20}})\text{/dB} $ RFS2/dB −300 10.5 −19.1 −1.1 −200 10.4 −18.0 −0.2 −100 12.7 −22.4 0 0 12.6 −22.0 0.2 100 13.3 −23.5 0.1 200 10.8 −19.7 −1.1 300 10.3 −15.7 1.9 表 6 大互调频差范围二阶互调伪信号干扰效应评估
Table 6. Interference effect evaluation of second-order intermodulation pseudo-signal with large intermodulation frequency difference range
|Δf|/MHz βF(Δf2) Xr(∆f)/dB $(\dfrac{ {E}_{1} }{ {E}_{10} }\text{.}\dfrac{ {E}_{2} }{ {E}_{20} })\text{/dB}$ RFS2/dB 0.6 12.6 0.1 −21.5 0.6 1.2 12.6 1.7 −19.6 0.9 1.8 12.6 5.6 −17.1 −0.5 2.4 12.6 10.4 −13.5 −1.7 3.0 12.6 22.7 3.0 2.5 -
[1] 许彤, 陈亚洲, 王玉明, 赵敏. 无人机数据链宽带白噪声电磁干扰效应研究[J]. 系统工程与电子技术, 2023, 45(7):1965-1973 doi: 10.12305/j.issn.1001-506X.2023.07.06Tong XU, Yazhou CHEN, Yuming WANG, Min ZHAO. Research on wideband white noise electromagnetic interference effect of UAV data link[J]. Systems Engineering and Electronics, 2023, 45(7): 1965-1973 doi: 10.12305/j.issn.1001-506X.2023.07.06 [2] 赵宏泽, 魏光辉, 杜雪, 等. 卫星导航接收机三阶互调阻塞效应分析[J]. 系统工程与电子技术, 2022, 44(4):1336-1342 doi: 10.12305/j.issn.1001-506X.2022.04.32Zhao Hongze, Wei Guanghui, Du Xue, et al. Analysis of third-order intermodulation blocking effect for satellite navigation receiver[J]. Systems Engineering and Electronics, 2022, 44(4): 1336-1342 doi: 10.12305/j.issn.1001-506X.2022.04.32 [3] Zhang Dongxiao, Zhou Xing, Cheng Erwei, et al. Investigation on effects of hpm pulse on UAV's datalink[J]. IEEE Transactions on Electromagnetic Compatibility, 2020, 62(3): 829-839. doi: 10.1109/TEMC.2019.2915285 [4] Zhao Hongze, Wei Guanghui, Pan Xiaodong. Evaluation method of noise electromagnetic radiation interference effect[J]. IEEE Transactions on Electromagnetic Compatibility, 2023, 65(1): 69-78. doi: 10.1109/TEMC.2022.3224791 [5] GJB 151B-2013,军用设备和分系统电磁发射和敏感度要求与测量[S].GJB 151B-2013, Electromagnetic emission and susceptibility requirements and measurements for military equipment and subsystems[S] [6] GJB 8848-2016,系统电磁环境效应试验方法[S]GJB 8848-2016, Electromagnetic environmental effects test methods for systems[S] [7] MIL-STD-461F, Requirements for the control of electromagnetic interference characteristics of subsystems and equipment[S]. [8] MIL-STD-464C, Electromagnetic environmental effects requirements for systems[S]. [9] Armstrong K. EMC for the functional safety of automobiles why EMC testing is insufficient, and what is necessary[C]//Proc of the IEEE International Symposium on Electromagnetic Compatibility. 2008. [10] Mardiguian M. Combined effects of several, simultaneous, EMI couplings[C]//Proc of the IEEE International Symposium on Electromagnetic Compatibility Symposium Record. 2000: 181-184. [11] Duffy A, Orlandi A, Armstrong K. Preliminary study of a reverberation chamber method for multiple-source testing using intermodulation[J]. IET Science, Measurement & Technology, 2010, 4(1): 21-27. doi: 10.1049/iet-smt.2009.0008 [12] Zhao Hongze, Wei Guanghui, Pan Xiaodong, et al. Pseudo-signal interference regularity of single-frequency electromagnetic radiation to stepped-frequency radar[J]. Electronics, 2022, 11(17): 2768. doi: 10.3390/electronics11172768 [13] 赵宏泽, 魏光辉, 潘晓东, 等. 扫频雷达双频连续波伪信号干扰效应研究[J/OL]. 北京航空航天大学学报. https://doi.org/10.13700/j.bh.1001-5965.2022.0739 .(2023-01-04).Zhao Hongze, Wei Guanghui, Pan Xiaodong, et al. Research on the interference effect of dual-frequency continuous wave pseudo-signal in swept-frequency radar[J/OL]. Journal of Beijing University od Aeronautics and Astronautics. https://doi.org/10.13700/j.bh.1001-5965.2022.0739.(2023-01-04) -