Influence of the width of triggering region on output characteristics of GaAs photoconductive semiconductor switch
-
摘要: 基于TCAD数值仿真软件,建立了异面结构砷化镓光导开关(GaAs PCSS)的二维数值计算模型,研究了触发区域宽度对GaAs PCSS输出特性影响。首先分析了PCSS的瞬态导通特性,结果表明,急剧增加的载流子浓度与快速演化的空间电离畴使PCSS工作在超快速导通模式。基于此,研究了触发区域宽度对PCSS输出特性影响,结果表明,宽度变大会促进载流子密度急剧倍增和雪崩电离畴的快速演化,缩短PCSS的延迟时间和导通时间。研究分析了不同触发位置对延迟时间与导通时间影响,结果表明,阴极触发的延迟时间明显低于阳极触发,而导通时间受触发位置的影响不显著。Abstract: Based on the theory of multiple avalanche domains, a two-dimensional numerical model for GaAs PCSS with opposed electrode structure is established. The influence of the width of the trigger region on the output characteristics of GaAs PCSS is investigated. Firstly, the switching transient of PCSS is analyzed. The results show that the rapid increase of the carrier concentration and the drastic evolution of the charge domain make PCSS operate in the ultrafast-switching mode. On this basis, this paper studies the influence of the width on the output characteristics of PCSS. The results show that the increase in the width can accelerate the rapid multiplication of carrier concentration and the rapid evolution of avalanche ionization domain, thus shorten the delay time and switching time of PCSS. Further more, the effects of different trigger positions on the delay time and switching time are analyzed. The results show that the delay time under cathode triggering is significantly lower than that under anode triggering, and the switching time is almost unaffected by the trigger position. The above conclusions can provide significant reference for the study on time jitter and synchronization of GaAs PCSS.
-
表 1 t=1.3 ns时不同W下PCSS表面平均载流子浓度和畴内最大峰值场强
Table 1. At t=1.3 ns, the average carrier concentration on the surface of PCSS and the maximum peak field intensity in the domain at different W
width of the trigger
region/μmaverage carrier concentration/(1015 cm−3) maximum peak electric field within
the domain/(kV/cm)2 0.73 72 3 1.00 149 4 1.85 250 5 2.31 375 6 8.77 381 -
[1] Wang Langning, Liu Jingliang. Solid-state nanosecond pulse generator using photoconductive semiconductor switch and helical pulse forming line[J]. IEEE Transactions on Plasma Science, 2017, 45(12): 3240-3245. doi: 10.1109/TPS.2017.2764502 [2] Li Song, Gao Jingming, Yang Hanwu, et al. Investigation on dynamic properties of amorphous magnetic core stimulated by different driving voltages[J]. IEEE Transactions on Plasma Science, 2019, 47(10): 4536-4540. doi: 10.1109/TPS.2019.2914265 [3] Tian Liqiang, Shi Wei. Analysis of operation mechanism of semi-insulating GaAs photoconductive semiconductor switches[J]. Journal of Applied Physics, 2008, 103: 124512. doi: 10.1063/1.2940728 [4] Xu Ming, Liu Rujun, Shang Xiaoyan, et al. High-gain operation of GaAs photoconductive semiconductor switch at 24.3nJ excitation[J]. IEEE Electron Device Letters, 2016, 37(6): 751-753. doi: 10.1109/LED.2016.2556858 [5] Shi Wei, Wang Shaoqiang, Ma Cheng, et al. Generation of an ultra-short electrical pulse with width shorter than the excitation laser[J]. Scientific Reports, 2016, 6: 27577. doi: 10.1038/srep27577 [6] Schoenberg J S H, Burger J W, Tyo J S, et al. Ultra-wideband source using gallium arsenide photoconductive semiconductor switches[J]. IEEE Transactions on Plasma Science, 1997, 25(2): 327-334. doi: 10.1109/27.602507 [7] Sun Yue, Hu Long, Dang Xin, et al. Investigation on the mechanism of triggering efficiency of high-power avalanche GaAs photoconductive semiconductor switch[J]. IEEE Electron Device Letters, 2021, 42(11): 1646-1649. doi: 10.1109/LED.2021.3114600 [8] 袁建强, 刘宏伟, 刘金锋, 等. 不同形状的光斑触发砷化镓光导开关[J]. 强激光与粒子束, 2010, 22(3):557-560 doi: 10.3788/HPLPB20102203.0557Yuan Jianqiang, Liu Hongwei, Liu Jinfeng, et al. GaAs photoconductive semiconductor switch triggered by laser spots with different profiles[J]. High Power Laser and Particle Beams, 2010, 22(3): 557-560 doi: 10.3788/HPLPB20102203.0557 [9] Shi Wei, Jiang Huan, Li Mengxia, et al. Investigation of electric field threshold of GaAs photoconductive semiconductor switch triggered by 1.6 μJ laser diode[J]. Applied Physics Letters, 2014, 104: 042108. doi: 10.1063/1.4863738 [10] Zhang Tian, Liu Kefu, Gao Shijia, et al. Characteristics of GaAs PCSS triggered by 1 μJ laser diode[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2015, 22(4): 1991-1996. doi: 10.1109/TDEI.2015.004950 [11] Selberherr S. Analysis and simulation of semiconductor devices[M]. Wien: Springer-Verlag, 1984. [12] Hu Long, Xu Ming, Li Xin, et al. Performance investigation of bulk photoconductive semiconductor switch based on reversely biased p+-i-n+ structure[J]. IEEE Transactions on Electron Devices, 2020, 67(11): 4963-4969. doi: 10.1109/TED.2020.3025984 [13] Vainshtein S N, Yuferev V S, Kostamovaara J T. Ultrahigh field multiple Gunn domains as the physical reason for superfast (picosecond range) switching of a bipolar GaAs transistor[J]. Journal of Applied Physics, 2005, 97: 024502. doi: 10.1063/1.1839638 [14] 刘英洲, 韦金红, 王郎宁, 等. 同面电极砷化镓光导开关的导通特性[J]. 半导体技术, 2023, 48(1):10-17Liu Yingzhou, Wei Jinhong, Wang Langning, et al. Switching transient characteristics of GaAs photoconductive semiconductor switch with co-planar electrodes[J]. Semiconductor Technology, 2023, 48(1): 10-17 [15] 陈星弼, 陈勇, 刘继芝, 等. 微电子器件[M]. 4版. 北京: 电子工业出版社, 2018Chen Xingbi, Chen Yong, Liu Jizhi, et al. Microelectronic devices[M]. 4th ed. Beijing: Publishing House of Electronics Industry, 2018 [16] Wei Jinhong, Li Song, Wang Langning, et al. Properties of switching transient in the semi-insulating GaAs photoconductive semiconductor switch with opposed contacts[J]. IEEE Transactions on Plasma Science, 2022, 50(10): 3635-3643. doi: 10.1109/TPS.2022.3207061 -