Energy adjustment and application of the HLS-II linac
-
摘要: 为了高效地对直线加速器输出束流能量进行调节,设计了合肥光源(HLS-II)直线加速器束流能量调节方案。该方案在调试阶段通过能谱分析系统观察束团状态并测量束流能量,储存环注入阶段使用3个束流位置探测器(BPM)对束流能量进行在线测量;使用自动相位扫描程序对速调管输出相位进行扫描,获得各加速段的能量增益公式;定量调节速调管的输出相位和高压,实现直线加速器输出束流能量的快速调节。在线应用结果表明,该方案能快速实现束流能量调节,调节后的束流具有良好品质,束流横向能散小于0.22%,注入速率明显改善。Abstract: To efficiently adjust the output beam energy of the Hefei Light Source II (HLS-II) linac, this study presents a beam energy adjustment scheme. During the debugging stage, the beam bunch state is observed, and the beam energy is measured using an energy spectrum analysis system. In the storage ring injection stage, three Beam Position Monitors (BPMs) are employed for online beam energy measurement. An automatic phase scanning program is utilized to scan the output phase of the klystrons, deriving the energy gain formula for each acceleration section. By quantitatively adjusting the output phase and high voltage of the klystrons, rapid adjustment of the output beam energy of the linac is achieved. The online application results demonstrate that the proposed scheme can swiftly adjust the beam energy, with the adjusted beam exhibiting excellent quality and a transverse energy spread of less than 0.22%. Furthermore, the implementation of this scheme significantly improves the injection rate.
-
表 1 KLY3~KLY8自动相位扫描结果
Table 1. Automatic phase scanning results of KLY3~KLY8
klystron peak output power/MW operating high voltage/kV energy gain formula KLY3 50 44 ${E_3} = 97.78\cos ({\varphi _3} + 179.38^\circ )$ KLY4 50 44 ${E_4} = 93.64\cos ({\varphi _4} - 173.98^\circ )$ KLY5 50 44 ${E_5} = 90.66\cos ({\varphi _5} + 79.58^\circ )$ KLY6 50 44 ${E_6} = 95.16\cos ({\varphi _6} + 31.04^\circ )$ KLY7 50 44 ${E_7} = 96.16\cos ({\varphi _7} + 148.82^\circ )$ KLY8 80 44 ${E_8} = 124.01\cos ({\varphi _8} + 38.11^\circ )$ 表 2 KLY7、KLY8高压与峰值加速相位以及高压与最大能量增益拟合结果
Table 2. Fitting results of the high voltage with peak acceleration phase and the high voltage with maximum energy gain for KLY7 and KLY8
klystron fitting results of klystron high voltage and
maximum energy gainfitting results of klystron high voltage and
peak acceleration phaseKLY7 ${A_7} = 2.93{U_7} - 33.06$ ${\varphi _{7\max}} = - 9.77{U_7} + 280.9$ KLY8 ${A_8} = 4.95{U_8} - 96.35$ ${\varphi _{8\max}} = - 10.52{U_8} + 425.8$ -
[1] Cheng Chaocai, Sun Baogen, Yang Yongliang, et al. Beam size and position measurement based on logarithm processing algorithm in HLS II[J]. Chinese Physics C, 2016, 40: 047004. doi: 10.1088/1674-1137/40/4/047004 [2] Bai Zhenghe, Wang Lin, Jia Qika, et al. Lattice optimization for the HLS-II storage ring[J]. Chinese Physics C, 2013, 37: 017001. doi: 10.1088/1674-1137/37/1/017001 [3] Zheng Jiajun, Yang Yongliang, Sun Baogen, et al. Central RF frequency measurement of the HLS-II storage ring[J]. Chinese Physics C, 2016, 40: 047005. doi: 10.1088/1674-1137/40/4/047005 [4] 王雪涛, 黄贵荣, 林宏翔, 等. HLS 800 MeV直线加速器相位控制系统的研制[J]. 核技术, 2012, 35(8):578-582Wang Xuetao, Huang Guirong, Lin Hongxiang, et al. Development of HLS 800 MeV Linac phase control system[J]. Nuclear Techniques, 2012, 35(8): 578-582 [5] 肖淑英, 赵明华. SSRF 150 MeV直线加速器的能量稳定系统设计及仿真[J]. 核电子学与探测技术, 2010, 30(5):606-609Xiao Shuying, Zhao Minghua. Research on the energy stability of 150 MeV LINAC in SSRF and system simulation[J]. Nuclear Electronics & Detection Technology, 2010, 30(5): 606-609 [6] Kim C, Kim M, Hwang I, et al. Energy feedback system for the PLS-II Linac[J]. Journal of the Korean Physical Society, 2017, 71(11): 775-779. doi: 10.3938/jkps.71.775 [7] Meier E, Biedron S G, LeBlanc G, et al. Development of a combined feed forward-feedback system for an electron Linac[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2009, 609(2/3): 79-88. [8] Furukawa K, Enomoto A, Kamikubota N, et al. Energy feedback systems at the KEKB injector linac[C]//Proceedings of the International Conference on Accelerator and Large Experimental Physics Control Systems. 1999: 248-250. [9] 王少哲, 池云龙, 刘熔, 等. BEPCⅡ直线加速器束流能量反馈系统设计[J]. 核电子学与探测技术, 2016, 36(11):1152-1155,1159Wang Shaozhe, Chi Yunlong, Liu Rong, et al. Design of the beam energy feedback system in BEPCII Linac[J]. Nuclear Electronics & Detection Technology, 2016, 36(11): 1152-1155,1159 [10] 任天祺, 唐雷雷, 周泽然. 基于MTCA的HLS-II直线加速器低电平系统改造[J]. 强激光与粒子束, 2020, 32:084006 doi: 10.11884/HPLPB202032.200080Ren Tianqi, Tang Leilei, Zhou Zeran. Upgrade of low level RF system based on micro telecom computing architecture (MTCA) for HLS-II LINAC[J]. High Power Laser and Particle Beams, 2020, 32: 084006 doi: 10.11884/HPLPB202032.200080 [11] 江孝国, 董晓娜, 王远, 等. 瞬态光学渡越辐射测量系统的设计[J]. 强激光与粒子束, 2010, 22(9):2147-2150 doi: 10.3788/HPLPB20102209.2147Jiang Xiaoguo, Dong Xiaona, Wang Yuan, et al. Design of instantaneous measurement system based on optical transition radiation[J]. High Power Laser and Particle Beams, 2010, 22(9): 2147-2150 doi: 10.3788/HPLPB20102209.2147 [12] Wang S, Iqbal M, Liu R, et al. Online beam energy measurement of Beijing electron positron collider II linear accelerator[J]. Review of Scientific Instruments, 2016, 87: 023301. doi: 10.1063/1.4941680 [13] Barofsky D, Henriques A, Crisp D, et al. Automation of the ReAccelerator linac phasing[C]//Proceedings of the 12th International Particle Accelerator Conference. 2021: 2170-2172. [14] 李承羲, 罗箐, 刘功发, 等. 基于Lattice Server中间件的束流光学参数测量[J]. 强激光与粒子束, 2020, 32:084004 doi: 10.11884/HPLPB202032.200054Li Chengxi, Luo Qing, Liu Gongfa, et al. Beam optical parameter measurement based on Lattice Server middlelayer[J]. High Power Laser and Particle Beams, 2020, 32: 084004 doi: 10.11884/HPLPB202032.200054 [15] Gu Pengda, Gen Zheqiao, Cui Yanyan, et al. Design studies of RF phasing system for BEPCII Linac[J]. Chinese Physics C, 2005, 29(3): 316-320. -