Study on Fe11+ ion irradiation damage of 7075 aluminum alloy
-
摘要: 7075铝合金因其优异的各项性能,作为结构部件,广泛应用于航天领域中。航天器空间环境中存在各种辐射粒子,这些粒子会对航天器材料产生不同程度的辐照损伤,对其可靠性构成了巨大的威胁,甚至会导致航天任务失败。通过选取不同剂量下3 MeV的Fe11+离子辐照7075铝合金,采用XRD、AFM和纳米压痕等测试手段对7075铝合金的辐照损伤进行了研究,分析了辐照前后7075铝合金的微观组织、表面形貌和硬度的变化。结果显示,离子辐照后的7075铝合金未形成新的相,且结构保持完整,表明其具有一定的抗辐照性能。同时,观察表面发现了由级联碰撞演化及表面缺陷扩散导致的山峰状突起,且样品表面粗糙度和突起的分布密度随剂量增加呈先增加后减小的趋势。另外,纳米压痕测试表明,辐照后样品硬度增加,且随剂量增加,硬度逐渐趋于饱和,经分析可知,样品产生辐照硬化是由于辐照缺陷阻碍了位错的滑移导致。Abstract: 7075 aluminum alloy is widely used in the field of aerospace materials as a structural component due to its excellent properties. There are various radiation particles in the spacecraft space environment, which will cause different degrees of irradiation damage to spacecraft materials, and threaten their reliability, and even lead to failure of space missions. Selecting different doses of 3 MeV Fe11+ ions to radiate the 7075 aluminum alloy, using XRD, AFM and nanoindentation to study the microstructure, surface morphology and hardness changes before and after irradiation, the tapered protrusions caused by cascade collision evolution and surface defect diffusion are found on the surface and the surface roughness of the sample increased first and then decreased with the increase of dose. In addition, the nanoindentation test shows that the hardness of the sample increased after irradiation, and with the increase of dose, the hardness gradually became saturated. The analysis shows that the irradiation hardening of the sample is caused by the irradiation defects impeding the slippage of dislocations.
-
Key words:
- 7075 aluminum alloy /
- ion irradiation /
- surface roughness /
- irradiation hardening /
- defect
-
表 1 7075铝合金样品化学成分表
Table 1. Chemical composition table of 7075 aluminum alloy sample
ingredient element mass fraction/% Al 93.59 Zn 2.36 Mg 2.89 Cu 0.66 Si 0.50 表 2 Nix-Gao模型计算的不同辐照剂量下样品硬度值
Table 2. Nix-GAO model calculated hardness value of the sample irradiated at different irradiation doses
irradiation damage/dpa H0/GPa ∆H0/GPa hardening ratio η/% unirradiated 2.24 — — 0.16 2.35 0.11 4.90 0.78 2.38 0.14 6.25 1.60 2.44 0.20 8.93 7.80 2.56 0.32 14.3 注:$\text{Δ}{H}_{\text{0} }\text{=}{H}_{\text{0} }^{\text{irr} }\text{−}{H}_{\text{0} }^{\text{unirr} },$$\eta { = }\dfrac{ { {\Delta }{H_{0} } } }{ {H_{0}^{ \text{iunirr} } } } \times {100{\text{%} } }$ -
[1] 王惠芬, 杨碧琦, 刘刚. 航天器结构材料的应用现状与未来展望[J]. 材料导报, 2018, 32(S1):395-399Wang Huifen, Yang Biqi, Liu Gang. Application status and future prospect of materials for spacecraft structures[J]. Materials Review, 2018, 32(S1): 395-399. [2] Rioja R J, Liu J. The evolution of Al-Li base products for aerospace and space applications[J]. Metallurgical and Materials Transactions A, 2012, 43(9): 3325-3337. doi: 10.1007/s11661-012-1155-z [3] Yeganefar A, Niknam S A, Songmene V. Machinability study of aircraft series aluminium alloys 7075-T6 and 7050-T7451[J]. Transactions of the Canadian Society for Mechanical Engineering, 2020, 44(3): 427-439. doi: 10.1139/tcsme-2019-0215 [4] Hu Yuting, Li Shuncai, Yu Qiu, et al. Investigation of tensile and compressive mechanical properties of typical aerospace alloy materials[J]. Transactions of the Canadian Society for Mechanical Engineering, 2021, 45(4): 612-625. doi: 10.1139/tcsme-2020-0207 [5] Sivaraman P, Prabhu M K, Nithyanandhan T, et al. Development of aluminum based AA 2014 and AA 7075 dissimilar metals for aerospace applications[J]. Materials Today: Proceedings, 2021, 37: 522-526. doi: 10.1016/j.matpr.2020.05.486 [6] Ramkumar K R, Sivasankaran S, Al-Mufadi F A, et al. Investigations on microstructure, mechanical, and tribological behaviour of AA 7075- xwt.% TiC composites for aerospace applications[J]. Archives of Civil and Mechanical Engineering, 2019, 19(2): 428-438. doi: 10.1016/j.acme.2018.12.003 [7] Ma Kaka, Wen Haiming, Hu Tao, et al. Mechanical behavior and strengthening mechanisms in ultrafine grain precipitation-strengthened aluminum alloy[J]. Acta Materialia, 2014, 62: 141-155. doi: 10.1016/j.actamat.2013.09.042 [8] 王长河. 单粒子效应对卫星空间运行可靠性影响[J]. 半导体情报, 1998, 35(1):1-8Wang Changhe. The influence with reliability of motional satellite by the single-event phenomena[J]. Semiconductor Intelligence, 1998, 35(1): 1-8. [9] Oksengendler B L, Maksimov S E, Turaeva N N, et al. Synergetic theory of catastrophic failures in the problem of radiation stability of solid-state electronics materials[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2014, 326: 45-47. [10] 王佩. 单粒子效应电路模拟方法研究[D]. 成都: 电子科技大学, 2010: 12Wang Pei. Research on simulation methods of single-particle effect circuits[D]. Chengdu: University of Electronic Science and Technology of China, 2010: 12. [11] Ni Kai, Ma Qian, Wan Hao, et al. Effect of He+ fluence on surface morphology and ion-irradiation induced defect evolution in 7075 aluminum alloys[J]. Materials Research Express, 2018, 5: 026514. doi: 10.1088/2053-1591/aaaca5 [12] Serventi A M, Antisari M V, Guzman L, et al. Microstructure and mechanical properties of a N+ implanted Al alloy[J]. Philosophical Magazine B, 1997, 76(4): 549-557. doi: 10.1080/01418639708241121 [13] Soria S R, Tolley A J, Sánchez E A. Defects induced by helium ion irradiation in aluminum alloys[J]. Procedia Materials Science, 2015, 8: 486-493. doi: 10.1016/j.mspro.2015.04.100 [14] Wan Hao, Si Naichao, Wang Quan, et al. Morphology variation, composition alteration and microstructure changes in ion-irradiated 1060 aluminum alloy[J]. Materials Research Express, 2018, 5: 026501. doi: 10.1088/2053-1591/aaa915 [15] Do S C, Kim K W, Jeong J H. The variation of hydrophobicity of aluminum alloy by nitrogen and argon ion implantation[J]. Heat and Mass Transfer, 2015, 51(4): 487-495. doi: 10.1007/s00231-014-1424-z [16] Soria S R, Tolley A, Sánchez E A. The influence of microstructure on blistering and bubble formation by He ion irradiation in Al alloys[J]. Journal of Nuclear Materials, 2015, 467: 357-367. doi: 10.1016/j.jnucmat.2015.09.051 [17] 史全岐, 张江, 乐超, 等. 地月空间粒子辐射环境及其对月表物质的影响研究进展[J]. 地球物理学报, 2023, 66(7):2685-2702Shi Quanqi, Zhang Jiang, Le Chao, et al. Review of particle radiation environment of the Earth-Moon space and its impact on Lunar surficial material generation[J]. Chinese Journal of Geophysics, 2023, 66(7): 2685-2702. [18] 方美华. 深空辐射粒子在介质材料中的输运及损伤研究[D]. 南京: 南京航空航天大学, 2011Fang Meihua. Study on deep space radiation transport and radiation damage in materials[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2011. [19] Ziegler J F, Ziegler M D, Biersack J P. SRIM – The stopping and range of ions in matter (2010)[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2010, 268(11/12): 1818-1823. [20] Egeland G W, Valdez J A, Maloy S A, et al. Heavy-ion irradiation defect accumulation in ZrN characterized by TEM, GIXRD, nanoindentation, and helium desorption[J]. Journal of Nuclear Materials, 2013, 435(1/3): 77-87. [21] Hapsari S, Sujitno T, Ahmadi H, et al. Analysis of nitrogen ion implantation on the corrosion resistance and mechanical properties of aluminum alloy 7075[J]. Journal of Physics: Conference Series, 2020, 1436: 012075. doi: 10.1088/1742-6596/1436/1/012075 [22] 张小楠. Fe、Ni基金属玻璃的离子辐照损伤研究[D]. 大连: 大连理工大学, 2019Zhang Xiaonan. Ion irradiation damage study of Fe and Ni-based metallic glass[D]. Dalian: Dalian University of Technology, 2019. [23] Kasada R, Takayama Y, Yabuuchi K, et al. A new approach to evaluate irradiation hardening of ion-irradiated ferritic alloys by Nano-indentation techniques[J]. Fusion Engineering and Design, 2011, 86(9/11): 2658-2661. [24] Nix W D, Gao Huajian. Indentation size effects in crystalline materials: a law for strain gradient plasticity[J]. Journal of the Mechanics and Physics of Solids, 1998, 46(3): 411-425. doi: 10.1016/S0022-5096(97)00086-0 [25] 闫占峰, 郑健, 周韦, 等. 6061-Al合金的自离子辐照损伤效应[J]. 强激光与粒子束, 2022, 34:056008 doi: 10.11884/HPLPB202234.210509Yan Zhanfeng, Zheng Jian, Zhou Wei, et al. The self-ion irradiation effects in 6061-Al alloy[J]. High Power Laser and Particle Beams, 2022, 34: 056008. doi: 10.11884/HPLPB202234.210509 [26] 郁金南. 材料辐照效应[M]. 北京: 化学工业出版社, 2007: 239-241Yu Jinnan. Material irradiation effect[M]. Beijing: Chemical Industry Press, 2007: 239-241. [27] Osetsky Y N, Bacon D J, Serra A, et al. Stability and mobility of defect clusters and dislocation loops in metals[J]. Journal of Nuclear Materials, 2000, 276(1/3): 65-77. [28] Osetsky Y N, Bacon D J. Atomic-scale modelling of primary damage and properties of radiation defects in metals[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2003, 202: 31-43. [29] 范嘉琪, 杨义涛, 丁兆楠, 等. 两种国产低活化的铁素体/马氏体钢的He离子辐照硬化研究[J]. 原子核物理评论, 2017, 34(2):219-225Fan Jiaqi, Yang Yitao, Ding Zhaonan, et al. Helium-implantation induced hardening of two low-activation ferritic/martensitic steels of China[J]. Nuclear Physics Review, 2017, 34(2): 219-225. [30] 丁兆楠, 杨义涛, 宋银, 等. 高能重离子辐照的低活化钢硬化效应[J]. 物理学报, 2017, 66:112501 doi: 10.7498/aps.66.112501Ding Zhaonan, Yang Yitao, Song Yin, et al. Hardening of reduced activation ferritic/martensitic steels under the irradiation of high-energy heavy-ion[J]. Acta Physica Sinica, 2017, 66: 112501. doi: 10.7498/aps.66.112501 -