All-fiber cylindrical vector beam MOPA laser based on integrated metasurface mode convertor
-
摘要: 柱矢量光束因其独特的偏振分布特性而在光镊、高分辨率成像、遥感、等离子体聚焦等领域发挥着重要作用。为实现全光纤高功率柱矢量MOPA激光器,采用自主设计基于集成超表面的模式转换光纤器件,进行了理论分析与实验验证。自主设计集成超表面的模式转换光纤器件可直接稳定输出数瓦功率的径向偏振柱矢量种子光,且输出模式纯度可达95%以上。实验中通过降低弯曲损耗并对模式进行控制,获得了单级放大输出功率为52.2 W的径向偏振柱矢量光稳定输出,且模式光场分布在输出功率增加过程中并未出现明显变化。为进一步分析输出的模式特性,采用旋转检偏器的方法检测输出光的偏振特性及偏振纯度,并利用非相干模式叠加方法计算了输出的径向偏振柱矢量光的模式纯度。结果表明,集成超表面模式转换的全光纤柱矢量MOPA激光器在最大输出功率情况下,输出光的偏振纯度约为95.2%,模式纯度约为94%,验证了该全光纤方案的可行性。Abstract: Driven by the unique polarization distribution characteristics, cylindrical vector beams play an important role in optical tweezers, high resolution imaging, remote sensing, plasma focusing, and other related fields. To realize all-fiber high-power cylindrical vector beams MOPA laser, a mode conversion fiber device based on integrated metasurface is independently designed, whose feasibility is analyzed and verified in this demonstration. The self-designed integrated metasurface mode conversion fiber device can act as a radially polarized vector beam seed with several watts, and the mode purity is more than 95%. In the experiment, a radially polarized vector beam with an output power of 52.2 W was achieved in the case of a single-stage amplifier by decreasing bending loss and controlling the mode. Moreover, the mode field distribution was maintained well during the amplification. To further analyze the obtained mode characteristics, a rotatable polarizer method was used to measure the polarization characteristics and polarization purity, and the mode purity was measured by an incoherent mode superposition method. The results show that the polarization purity of the radially polarized vector beam is approximately 95.2% and the mode purity is about 94% with the maximum output power, which verify the feasibility of the all-fiber scheme.
-
Key words:
- metasurface /
- cylindrical vector beam /
- radially polarized beam /
- fiber laser /
- mode analysis /
- bend loss
-
表 1 光纤参数
Table 1. Fiber parameters
fiber core diameter/μm cladding diameter/μm cladding refractive index numerical aperture normalized frequency laser wavelength/nm 20 400 1.45 0.064 3.78 1064 -
[1] 崔祥霞, 陈君, 杨兆华. 径向偏振光研究的最新进展[J]. 激光杂志, 2009, 30(2):7-10 doi: 10.3969/j.issn.0253-2743.2009.02.003Cui Xiangxia, Chen Jun, Yang Zhaohua. Research progress on radially polarized beam[J]. Laser Journal, 2009, 30(2): 7-10 doi: 10.3969/j.issn.0253-2743.2009.02.003 [2] Roy S, Ushakova K, Van Den Berg Q, et al. Radially polarized light for detection and nanolocalization of dielectric particles on a planar substrate[J]. Physical Review Letters, 2015, 114: 103903. doi: 10.1103/PhysRevLett.114.103903 [3] Zhang Chonglei, Wang Rong, Min Changjun, et al. Experimental approach to the microscopic phase-sensitive surface plasmon resonance biosensor[J]. Applied Physics Letters, 2013, 102: 011114. doi: 10.1063/1.4773997 [4] Youngworth K S, Brown T G. Focusing of high numerical aperture cylindrical-vector beams[J]. Optics Express, 2000, 7(2): 77-87. doi: 10.1364/OE.7.000077 [5] Grosjean T, Courjon D, Spajer M. An all-fiber device for generating radially and other polarized light beams[J]. Optics Communications, 2002, 203(1/2): 1-5. [6] Guo Yancheng, Liu Yange, Wang Zhi, et al. All-fiber mode-locked cylindrical vector beam laser using broadband long period grating[J]. Laser Physics Letters, 2018, 15: 085108. doi: 10.1088/1612-202X/aac5c9 [7] Song Huaqing, Zhao Zhongxiang, Xian Lunlun, et al. A wavelength-tunable narrow-linewidth all-fiber laser with cylindrical vector beam outputs[J]. Optics Communications, 2018, 428: 245-250. doi: 10.1016/j.optcom.2018.07.064 [8] Sun Biao, Wang Anting, Xu Lixin, et al. Low-threshold single-wavelength all-fiber laser generating cylindrical vector beams using a few-mode fiber Bragg grating[J]. Optics Letters, 2012, 37(4): 464-466. doi: 10.1364/OL.37.000464 [9] Zhang Jiaojiao, Wan Hongdan, Zhang Lin, et al. All-fiber CW cylindrical vector beam fiber laser based on few-mode fiber Bragg grating[J]. Optik, 2017, 147: 109-114. doi: 10.1016/j.ijleo.2017.08.064 [10] Wang Jie, Wan Hongdan, Cao Han, et al. A 1- μm cylindrical vector beam fiber ring laser based on a mode selective coupler[J]. IEEE Photonics Technology Letters, 2018, 30(9): 765-768. doi: 10.1109/LPT.2018.2797990 [11] Zhang Yimin, Tao Runxia, Li Hongxun, et al. Stable generation of cylindrical vector beams with an all-fiber laser using polarization-maintaining and ring-core fibers[J]. Optics Express, 2020, 28(12): 18351-18359. doi: 10.1364/OE.395757 [12] Liu Xiangzhong, Zhang Yimin, Dong Zhipeng, et al. High-power cylindrical vector beam fiber laser based on an all-polarization-maintaining structure[J]. Optics Express, 2022, 30(15): 27123-27131. doi: 10.1364/OE.463667 [13] Zhang B M, Feng Yujun, Lin Di, et al. Demonstration of arbitrary temporal shaping of picosecond pulses in a radially polarized Yb-fiber MOPA with > 10 W average power[J]. Optics Express, 2017, 25(13): 15402-15413. doi: 10.1364/OE.25.015402 [14] Marcuse D. Bend loss of slab and fiber modes computed with diffraction theory[J]. IEEE Journal of Quantum Electronics, 1993, 29(12): 2957-2961. doi: 10.1109/3.259412 [15] Lin Di, Xia Kegui, Li Jianlang, et al. Efficient, high-power, and radially polarized fiber laser[J]. Optics Letters, 2010, 35(13): 2290-2292. doi: 10.1364/OL.35.002290 [16] Lin Di, Daniel J M O, Gecevičius M, et al. Cladding-pumped ytterbium-doped fiber laser with radially polarized output[J]. Optics Letters, 2014, 39(18): 5359-5361. doi: 10.1364/OL.39.005359 -