High power and high-efficiency miniaturized power amplifier with compact microstrip resonant cell
-
摘要: 介绍了大功率高效率功率放大器(功放)在实际设计时面临的晶体管寄生效应问题,并通过引入晶体管封装寄生模型对本征端阻抗进行等效迁移,进而提高了输出匹配网络设计的便捷性。提出一种基于紧凑型微带谐振单元的电路设计方法及其传输线拓扑结构,其中,紧凑型微带谐振单元的作用是提供功放在三次谐波所需的开路点,从而通过调谐传输线满足相应阻抗条件。其优点还包括:基波频率下插入损耗低、效率高;实际物理尺寸小,可满足小型化需求。为了更好地验证上述理论,基于10 W GaN HEMT CGH40010F晶体管和大功率高效率E/F开关类功放在2.2 GHz的工作频率下进行了具体的电路设计。仿真结果表明,该款功放的最大功率附加效率可达78.4%,最大输出功率可达40.1 dBm,功率增益为12.1 dB。Abstract: This paper presents the problem of the parasitic effect of the transistor for the practical design of high power and high-efficiency power amplifiers (PAs). To solve the problem, we propose a new method: transferring the impedances at the intrinsic plane into those at the package plane with the help of the package model. In this case, the convenience of the design of the output matching network is improved a lot. Moreover, the design methodology of PAs with compact microstrip resonant cell (CMRC) as well as the topology of the transmission-lines (TLs) are also proposed. The CMRC can provide the required open-circuit for the third harmonic. On this basis, the harmonic impedance conditions can be easily realized by the tuning TLs. The insertion loss of the proposed CMRC at the fundamental is low and the physical dimension is relatively small. To verify the feasibility of the proposed circuit, using a 10W GaN HEMT CGH40010F transistor, a switch-mode class E/F PA operating at 2.2 GHz is designed as a prototype. Simulation results show the power-added efficiency of 78.4%, output power of 40.1 dBm, and power gain of 12.1 dB.
-
Key words:
- power amplifier /
- high power /
- high-efficiency /
- miniaturized /
- parasitic effect /
- compact microstrip resonant cell
-
表 1 版图中传输线的实际物理尺寸
Table 1. Physical dimensions of the transmission-lines of the schematic
transmission-line W/mm L/mm T1 2.4 21.2 T2 0.7 26.8 T3 1.6 0.8 T4 1.5 1.7 T5 0.9 25.2 T6 0.9 26.3 T7 0.9 12.5 T8 2.2 3.3 T9 2.4 14.8 T10 2.4 12.1 -
[1] 郝国欣, 金燕波, 郭华民, 等. 大功率宽带射频脉冲功率放大器设计[J]. 通信技术, 2006(3):134-136Hao Guoxin, Jin Yanbo, Guo Huamin, et al. Design of high power broadband RF pulse power amplifiers[J]. Communication Technology, 2006(3): 134-136 [2] 李建兵, 林鹏飞, 郝保良, 等. 微波功率放大器发展概述[J]. 强激光与粒子束, 2020, 32:200095 doi: 10.11884/HPLPB202032.200095Li Jianbing, Lin Pengfei, Hao Baoliang, et al. Overview of development of microwave power amplifiers[J]. High Power Laser and Particle Beams, 2020, 32: 200095 doi: 10.11884/HPLPB202032.200095 [3] Correia L M, Zeller D, Blume O, et al. Challenges and enabling technologies for energy aware mobile radio networks[J]. IEEE Communications Magazine, 2010, 48(11): 66-72. doi: 10.1109/MCOM.2010.5621969 [4] Wang J C, He S B, You F, et al. Codesign of high-efficiency power amplifier and ring-resonator filter based on a series of continuous modes and even–odd-mode analysis[J]. IEEE Transactions on Microwave Theory and Techniques, 2018, 66(6): 2867-2878. doi: 10.1109/TMTT.2018.2819650 [5] Tyler V J. A new high efficiency high power amplifier[J]. Marconi Review, 1958, 21(130): 96-109. [6] Alizadeh A, Yaghoobi M, Meghdadi M, et al. A 10-W X-band class-F high-power amplifier in a 0.25-μm GaAs pHEMT technology[J]. IEEE Transactions on Microwave Theory and Techniques, 2021, 69(1): 157-169. doi: 10.1109/TMTT.2020.3033819 [7] Zhou L H, Zhou X Y, Chan W S, et al. Wideband class-F−1 power amplifier with dual-/quad-mode bandpass response[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2020, 67(7): 2239-2249. doi: 10.1109/TCSI.2020.2978914 [8] Sokal N O, Sokal A D. Class E-A new class of high-efficiency tuned single-ended switching power amplifiers[J]. IEEE Journal of Solid-State Circuits, 1975, 10(3): 168-176. doi: 10.1109/JSSC.1975.1050582 [9] Liu C, Cheng Q F. A novel compensation circuit of high-efficiency concurrent dual-band class-E power amplifiers[J]. IEEE Microwave and Wireless Components Letters, 2018, 28(8): 720-722. doi: 10.1109/LMWC.2018.2842686 [10] You F, He S B, Tang X H, et al. The effects of limited drain current and on resistance on the performance of an LDMOS inverse class-E power amplifier[J]. IEEE Transactions on Microwave Theory and Techniques, 2009, 57(2): 336-343. doi: 10.1109/TMTT.2008.2011175 [11] Liu C, Cheng Q F. Analysis and design of high-efficiency parallel-circuit class-E/F power amplifier[J]. IEEE Transaction on Microwave Theory and Techniques, 2019, 67(6): 2382-2392. doi: 10.1109/TMTT.2019.2902548 [12] Lim J S, Kim H S, Park J S, et al. A power amplifier with efficiency improved using defected ground structure[J]. IEEE Microwave and Wireless Components Letters, 2001, 11(4): 170-172. doi: 10.1109/7260.916333 [13] Ji S H, Cho C S, Lee J W, et al. Concurrent dual-band class-E power amplifier using composite right/left-handed transmission lines[J]. IEEE Transaction on Microwave Theory and Techniques, 2007, 55(6): 1341-1347. doi: 10.1109/TMTT.2007.895236 [14] Feng T, Ma K X, Wang Y Q, et al. Bandpass-filtering power amplifier with compact size and wideband harmonic suppression[J]. IEEE Transaction on Microwave Theory and Techniques, 2022, 70(2): 1254-1268. doi: 10.1109/TMTT.2021.3124254 [15] Chen S C, Xue Q. A class-F power amplifier with CMRC[J]. IEEE Microwave and Wireless Components Letters, 2011, 21(1): 31-33. doi: 10.1109/LMWC.2010.2091265 [16] Hayati M, Sheikhi A, Grebennikov A. Class-F power amplifier with high power added efficiency using bowtie-shaped harmonic control circuit[J]. IEEE Microwave and Wireless Components Letters, 2015, 25(2): 133-135. doi: 10.1109/LMWC.2014.2382649 [17] Negra R, Ghannouchi F M, Bächtold W. Study and design optimization of multiharmonic transmission-line load networks for class-E and class-F K-band MMIC power amplifiers[J]. IEEE Transactions on Microwave Theory and Techniques, 2007, 55(6): 1390-1397. doi: 10.1109/TMTT.2007.896769 [18] Grebennikov A. High-efficiency class E/F lumped and transmission-line power amplifiers[J]. IEEE Transactions on Microwave Theory and Techniques, 2011, 59(6): 1579-1588. doi: 10.1109/TMTT.2011.2114672 -